c Horizontal Convexity on Carnot Groups
Journal of convex analysis, Tome 19 (2012) no. 2, pp. 541-567.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\G{\mathbf{G}} Given a real-valued function $c$ defined on the cartesian product of a generic Carnot group $\G$ and the first layer $V_1$ of its Lie algebra, we introduce a notion of $c$ horizontal convex ($c$ H-convex) function on $\G$ as the supremum of a suitable family of affine functions; this family is defined pointwisely, and depends strictly on the horizontal structure of the group. This abstract approach provides $c$ H-convex functions that, under appropriate assumptions on $c,$ are characterized by the nonemptiness of the $c$ H-subdifferential and, above all, are locally H-semiconvex, thereby admitting horizontal derivatives almost everywhere. It is noteworthy that such functions can be recovered via a Rockafellar technique, starting from a suitable notion of $c$ H-cyclic monotonicity for maps. In the particular case where $c(g,v)=\langle \xi_1(g),v \rangle,$ we obtain the well-known weakly H-convex functions introduced by Danielli, Garofalo and Nhieu. Finally, we suggest a possible application to optimal mass transportation.
Classification : 52A01, 22E25
Mots-clés : Carnot group, horizontal convexity, c horizontal convexity, c horizontal differential, c horizontal cyclic monotonicity
@article{JCA_2012_19_2_JCA_2012_19_2_a12,
     author = {A. Calogero and R. Pini},
     title = {c {Horizontal} {Convexity} on {Carnot} {Groups}},
     journal = {Journal of convex analysis},
     pages = {541--567},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a12/}
}
TY  - JOUR
AU  - A. Calogero
AU  - R. Pini
TI  - c Horizontal Convexity on Carnot Groups
JO  - Journal of convex analysis
PY  - 2012
SP  - 541
EP  - 567
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a12/
ID  - JCA_2012_19_2_JCA_2012_19_2_a12
ER  - 
%0 Journal Article
%A A. Calogero
%A R. Pini
%T c Horizontal Convexity on Carnot Groups
%J Journal of convex analysis
%D 2012
%P 541-567
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a12/
%F JCA_2012_19_2_JCA_2012_19_2_a12
A. Calogero; R. Pini. c Horizontal Convexity on Carnot Groups. Journal of convex analysis, Tome 19 (2012) no. 2, pp. 541-567. http://geodesic.mathdoc.fr/item/JCA_2012_19_2_JCA_2012_19_2_a12/