Differentiabilty and Partial Hölder Continuity of Solutions of Nonlinear Elliptic Systems
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 63-9
Cet article a éte moissonné depuis la source Heldermann Verlag
The authors continue the study of regularity properties for solutions of elliptic systems started by M. A. Ragusa [(1) Local H\"older regularity for solutions of elliptic systems, Duke Mathematical Journal 113 (2002) 385--397; (2) Continuity of the derivatives of solutions related to elliptic equations, Proc. Royal Society of Edinburgh 136(A) (2006) 1027--1039], proving, in a bounded open set $\Omega$ of ${\mathbb R}^n$, local differentiability and partial H\"older continuity of the weak solutions $u$ of nonlinear elliptic systems of order $2m$ in divergence form \begin{equation*} \sum_{|\alpha|\leq m}(-1)^{|\alpha|} D^\alpha \, a^\alpha (x, Du) = 0. \end{equation*} Specifically, we generalize the results obtained by S. Campanato and P. Cannarsa [Differentiability and partial H\"older continuity of the solutions of nonlinear elliptic systems of order $2m$ with quadratic growth, Ann. Scuola Norm. Sup. Pisa (4)8 (1981) 285--309] under the hypothesis that the coefficients $a^\alpha (x, Du)$ are strictly monotone with nonlinearity $q = 2$.
Classification :
35J48, 35D10, 35J45, 35D30
Mots-clés : Higher order nonlinear elliptic systems, divergence form, monotone coefficients, generalized Sobolev spaces, local differentiability
Mots-clés : Higher order nonlinear elliptic systems, divergence form, monotone coefficients, generalized Sobolev spaces, local differentiability
@article{JCA_2012_19_1_JCA_2012_19_1_a3,
author = {G. Floridia and M. A. Ragusa},
title = {Differentiabilty and {Partial} {H\"older} {Continuity} of {Solutions} of {Nonlinear} {Elliptic} {Systems}},
journal = {Journal of convex analysis},
pages = {63--9},
year = {2012},
volume = {19},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a3/}
}
TY - JOUR AU - G. Floridia AU - M. A. Ragusa TI - Differentiabilty and Partial Hölder Continuity of Solutions of Nonlinear Elliptic Systems JO - Journal of convex analysis PY - 2012 SP - 63 EP - 9 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a3/ ID - JCA_2012_19_1_JCA_2012_19_1_a3 ER -
%0 Journal Article %A G. Floridia %A M. A. Ragusa %T Differentiabilty and Partial Hölder Continuity of Solutions of Nonlinear Elliptic Systems %J Journal of convex analysis %D 2012 %P 63-9 %V 19 %N 1 %U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a3/ %F JCA_2012_19_1_JCA_2012_19_1_a3
G. Floridia; M. A. Ragusa. Differentiabilty and Partial Hölder Continuity of Solutions of Nonlinear Elliptic Systems. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 63-9. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a3/