Local Boundedness Properties for Generalized Monotone Operators
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 49-61
Cet article a éte moissonné depuis la source Heldermann Verlag
We show that a well-known property of monotone operators, namely local boundedness in the interior of their domain, remains valid for the larger class of premonotone maps. This generalizes a similar result by A. N. Iusem, G. Kassay and W. Sosa J. Convex Analysis 16 (2009) 807--826] to Banach spaces.
Classification :
47H05, 49J53, 47H04
Mots-clés : Monotone operator, generalized monotone operator, locally bounded operator
Mots-clés : Monotone operator, generalized monotone operator, locally bounded operator
@article{JCA_2012_19_1_JCA_2012_19_1_a2,
author = {M. H. Alizadeh and N. Hadjisavvas and M. Roohi},
title = {Local {Boundedness} {Properties} for {Generalized} {Monotone} {Operators}},
journal = {Journal of convex analysis},
pages = {49--61},
year = {2012},
volume = {19},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/}
}
TY - JOUR AU - M. H. Alizadeh AU - N. Hadjisavvas AU - M. Roohi TI - Local Boundedness Properties for Generalized Monotone Operators JO - Journal of convex analysis PY - 2012 SP - 49 EP - 61 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/ ID - JCA_2012_19_1_JCA_2012_19_1_a2 ER -
M. H. Alizadeh; N. Hadjisavvas; M. Roohi. Local Boundedness Properties for Generalized Monotone Operators. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/