Local Boundedness Properties for Generalized Monotone Operators
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 49-61.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show that a well-known property of monotone operators, namely local boundedness in the interior of their domain, remains valid for the larger class of premonotone maps. This generalizes a similar result by A. N. Iusem, G. Kassay and W. Sosa J. Convex Analysis 16 (2009) 807--826] to Banach spaces.
Classification : 47H05, 49J53, 47H04
Mots-clés : Monotone operator, generalized monotone operator, locally bounded operator
@article{JCA_2012_19_1_JCA_2012_19_1_a2,
     author = {M. H. Alizadeh and N. Hadjisavvas and M. Roohi},
     title = {Local {Boundedness} {Properties} for {Generalized} {Monotone} {Operators}},
     journal = {Journal of convex analysis},
     pages = {49--61},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/}
}
TY  - JOUR
AU  - M. H. Alizadeh
AU  - N. Hadjisavvas
AU  - M. Roohi
TI  - Local Boundedness Properties for Generalized Monotone Operators
JO  - Journal of convex analysis
PY  - 2012
SP  - 49
EP  - 61
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/
ID  - JCA_2012_19_1_JCA_2012_19_1_a2
ER  - 
%0 Journal Article
%A M. H. Alizadeh
%A N. Hadjisavvas
%A M. Roohi
%T Local Boundedness Properties for Generalized Monotone Operators
%J Journal of convex analysis
%D 2012
%P 49-61
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/
%F JCA_2012_19_1_JCA_2012_19_1_a2
M. H. Alizadeh; N. Hadjisavvas; M. Roohi. Local Boundedness Properties for Generalized Monotone Operators. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 49-61. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a2/