A Maximal Monotone Operator of Type (D) for which Maximal Monotone Extension to the Bidual is Not of Type (D)
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 295-3.

Voir la notice de l'article provenant de la source Heldermann Verlag

We define a family of linear type (D) operators for which the inverse of their maximal monotone extensions to the bidual are not of type (D) and provide an example of an operator in this family.
Mots-clés : Maximal monotone operator, type (D), Banach space, extension, bidual
@article{JCA_2012_19_1_JCA_2012_19_1_a16,
     author = {O. Bueno and B. F. Svaiter},
     title = {A {Maximal} {Monotone} {Operator} of {Type} {(D)} for which {Maximal} {Monotone} {Extension} to the {Bidual} is {Not} of {Type} {(D)}},
     journal = {Journal of convex analysis},
     pages = {295--3},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a16/}
}
TY  - JOUR
AU  - O. Bueno
AU  - B. F. Svaiter
TI  - A Maximal Monotone Operator of Type (D) for which Maximal Monotone Extension to the Bidual is Not of Type (D)
JO  - Journal of convex analysis
PY  - 2012
SP  - 295
EP  - 3
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a16/
ID  - JCA_2012_19_1_JCA_2012_19_1_a16
ER  - 
%0 Journal Article
%A O. Bueno
%A B. F. Svaiter
%T A Maximal Monotone Operator of Type (D) for which Maximal Monotone Extension to the Bidual is Not of Type (D)
%J Journal of convex analysis
%D 2012
%P 295-3
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a16/
%F JCA_2012_19_1_JCA_2012_19_1_a16
O. Bueno; B. F. Svaiter. A Maximal Monotone Operator of Type (D) for which Maximal Monotone Extension to the Bidual is Not of Type (D). Journal of convex analysis, Tome 19 (2012) no. 1, pp. 295-3. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a16/