Finitely Well-Positioned Sets
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 249-279
Voir la notice de l'article provenant de la source Heldermann Verlag
We introduce and study finitely well-positioned sets, a class of asymptotically "narrow" sets that generalize the well-positioned sets recently investigated by S. Adly, E. Ernst and M. Thera [Commun. Contemp. Math. 4 (2001) 145-160; J. Global Optim. 29 (2004) 337-351], as well as the plastering property of M. A. Krasnoselskii ["Positive solutions of operator equations", Noordhoff, Groningen (1964)].
Classification :
65K, 90C
Mots-clés : Convex analysis, asymptotic cones, recession cones, plastering property
Mots-clés : Convex analysis, asymptotic cones, recession cones, plastering property
@article{JCA_2012_19_1_JCA_2012_19_1_a14,
author = {M. Marinacci and L. Montrucchio},
title = {Finitely {Well-Positioned} {Sets}},
journal = {Journal of convex analysis},
pages = {249--279},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2012},
url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a14/}
}
M. Marinacci; L. Montrucchio. Finitely Well-Positioned Sets. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 249-279. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a14/