Finitely Well-Positioned Sets
Journal of convex analysis, Tome 19 (2012) no. 1, pp. 249-279.

Voir la notice de l'article provenant de la source Heldermann Verlag

We introduce and study finitely well-positioned sets, a class of asymptotically "narrow" sets that generalize the well-positioned sets recently investigated by S. Adly, E. Ernst and M. Thera [Commun. Contemp. Math. 4 (2001) 145-160; J. Global Optim. 29 (2004) 337-351], as well as the plastering property of M. A. Krasnoselskii ["Positive solutions of operator equations", Noordhoff, Groningen (1964)].
Classification : 65K, 90C
Mots-clés : Convex analysis, asymptotic cones, recession cones, plastering property
@article{JCA_2012_19_1_JCA_2012_19_1_a14,
     author = {M. Marinacci and L. Montrucchio},
     title = {Finitely {Well-Positioned} {Sets}},
     journal = {Journal of convex analysis},
     pages = {249--279},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2012},
     url = {http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a14/}
}
TY  - JOUR
AU  - M. Marinacci
AU  - L. Montrucchio
TI  - Finitely Well-Positioned Sets
JO  - Journal of convex analysis
PY  - 2012
SP  - 249
EP  - 279
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a14/
ID  - JCA_2012_19_1_JCA_2012_19_1_a14
ER  - 
%0 Journal Article
%A M. Marinacci
%A L. Montrucchio
%T Finitely Well-Positioned Sets
%J Journal of convex analysis
%D 2012
%P 249-279
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a14/
%F JCA_2012_19_1_JCA_2012_19_1_a14
M. Marinacci; L. Montrucchio. Finitely Well-Positioned Sets. Journal of convex analysis, Tome 19 (2012) no. 1, pp. 249-279. http://geodesic.mathdoc.fr/item/JCA_2012_19_1_JCA_2012_19_1_a14/