The Biduality Problem and M-Ideals in Weighted Spaces of Holomorphic Functions
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1065-1074
Voir la notice de l'article provenant de la source Heldermann Verlag
Given a weight $v$ on an open subset $U$ of ${\bf C}^n$, ${\cal H}_v(U)$ (resp. ${\cal H}_{v_o}(U)$) denotes the Banach space of holomorphic functions $f$ on $U$ such that $vf$ is bounded on $U$ (resp. converges to $0$ on the boundary of $U$). We show that ${\cal H}_v(U)$ is canonically isometrically isomorphic to the bidual of ${\cal H}_{v_o}(U)$ if and only if ${\cal H}_{v_o}(U)$ is an M-ideal in ${\cal H}_v(U)$ and the associated weights $\tilde v_o$ and $\tilde v$ coincide.
@article{JCA_2011_18_4_JCA_2011_18_4_a8,
author = {C. Boyd and P. Rueda},
title = {The {Biduality} {Problem} and {M-Ideals} in {Weighted} {Spaces} of {Holomorphic} {Functions}},
journal = {Journal of convex analysis},
pages = {1065--1074},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a8/}
}
TY - JOUR AU - C. Boyd AU - P. Rueda TI - The Biduality Problem and M-Ideals in Weighted Spaces of Holomorphic Functions JO - Journal of convex analysis PY - 2011 SP - 1065 EP - 1074 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a8/ ID - JCA_2011_18_4_JCA_2011_18_4_a8 ER -
C. Boyd; P. Rueda. The Biduality Problem and M-Ideals in Weighted Spaces of Holomorphic Functions. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1065-1074. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a8/