Contingent Epiderivatives of Functions on Time Scales
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1047-1064
Voir la notice de l'article provenant de la source Heldermann Verlag
We characterize functions defined on times scales by the contingent epiderivative. Relations between delta and nabla derivatives and the contingent epiderivative of functions defined on time scales are investigated. We formulate two notions that are exploited in optimal control theory, namely the Fermat Rule and pseudo-convexity. Appropriate illustrative examples are presented.
@article{JCA_2011_18_4_JCA_2011_18_4_a7,
author = {E. Girejko and D. Mozyrska and M. Wyrwas},
title = {Contingent {Epiderivatives} of {Functions} on {Time} {Scales}},
journal = {Journal of convex analysis},
pages = {1047--1064},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a7/}
}
TY - JOUR AU - E. Girejko AU - D. Mozyrska AU - M. Wyrwas TI - Contingent Epiderivatives of Functions on Time Scales JO - Journal of convex analysis PY - 2011 SP - 1047 EP - 1064 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a7/ ID - JCA_2011_18_4_JCA_2011_18_4_a7 ER -
E. Girejko; D. Mozyrska; M. Wyrwas. Contingent Epiderivatives of Functions on Time Scales. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1047-1064. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a7/