A Universal Compactification of Topological Positively Convex Sets
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 999-1012
Voir la notice de l'article provenant de la source Heldermann Verlag
A topological positively convex set is a positively convex subset of a topological real linear space with the induced topology. Topological positively convex modules are a canonical generalization defined without the requirement to be a subset of a linear space. For any topological positively convex module or set there is a universal continuous positively affine mapping to a regularly ordered Saks space yielding the universal compactification.
@article{JCA_2011_18_4_JCA_2011_18_4_a4,
author = {D. Pumpl\"un},
title = {A {Universal} {Compactification} of {Topological} {Positively} {Convex} {Sets}},
journal = {Journal of convex analysis},
pages = {999--1012},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a4/}
}
D. Pumplün. A Universal Compactification of Topological Positively Convex Sets. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 999-1012. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a4/