A Universal Compactification of Topological Positively Convex Sets
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 999-1012.

Voir la notice de l'article provenant de la source Heldermann Verlag

A topological positively convex set is a positively convex subset of a topological real linear space with the induced topology. Topological positively convex modules are a canonical generalization defined without the requirement to be a subset of a linear space. For any topological positively convex module or set there is a universal continuous positively affine mapping to a regularly ordered Saks space yielding the universal compactification.
@article{JCA_2011_18_4_JCA_2011_18_4_a4,
     author = {D. Pumpl\"un},
     title = {A {Universal} {Compactification} of {Topological} {Positively} {Convex} {Sets}},
     journal = {Journal of convex analysis},
     pages = {999--1012},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a4/}
}
TY  - JOUR
AU  - D. Pumplün
TI  - A Universal Compactification of Topological Positively Convex Sets
JO  - Journal of convex analysis
PY  - 2011
SP  - 999
EP  - 1012
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a4/
ID  - JCA_2011_18_4_JCA_2011_18_4_a4
ER  - 
%0 Journal Article
%A D. Pumplün
%T A Universal Compactification of Topological Positively Convex Sets
%J Journal of convex analysis
%D 2011
%P 999-1012
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a4/
%F JCA_2011_18_4_JCA_2011_18_4_a4
D. Pumplün. A Universal Compactification of Topological Positively Convex Sets. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 999-1012. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a4/