Epigraphical Cones I
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1171-1196
Voir la notice de l'article provenant de la source Heldermann Verlag
Up to orthogonal transformation, a solid closed convex cone K in the Euclidean space Rn+1 is the epigraph of a nonnegative sublinear function f from Rn to R. This work explores the link between the geometric properties of K and the analytic properties of f. Part two of this article is published in this journal 19 (2012), Number 1.
Classification :
46B10, 46B20, 52A41
Mots-clés : Convex cone, epigraphical cone, sublinear function, inradius of a cone, solidity, pointedness, angular spectrum
Mots-clés : Convex cone, epigraphical cone, sublinear function, inradius of a cone, solidity, pointedness, angular spectrum
@article{JCA_2011_18_4_JCA_2011_18_4_a13,
author = {A. Seeger},
title = {Epigraphical {Cones} {I}},
journal = {Journal of convex analysis},
pages = {1171--1196},
publisher = {mathdoc},
volume = {18},
number = {4},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a13/}
}
A. Seeger. Epigraphical Cones I. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1171-1196. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a13/