Epigraphical Cones I
Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1171-1196.

Voir la notice de l'article provenant de la source Heldermann Verlag

Up to orthogonal transformation, a solid closed convex cone K in the Euclidean space Rn+1 is the epigraph of a nonnegative sublinear function f from Rn to R. This work explores the link between the geometric properties of K and the analytic properties of f. Part two of this article is published in this journal 19 (2012), Number 1.
Classification : 46B10, 46B20, 52A41
Mots-clés : Convex cone, epigraphical cone, sublinear function, inradius of a cone, solidity, pointedness, angular spectrum
@article{JCA_2011_18_4_JCA_2011_18_4_a13,
     author = {A. Seeger},
     title = {Epigraphical {Cones} {I}},
     journal = {Journal of convex analysis},
     pages = {1171--1196},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a13/}
}
TY  - JOUR
AU  - A. Seeger
TI  - Epigraphical Cones I
JO  - Journal of convex analysis
PY  - 2011
SP  - 1171
EP  - 1196
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a13/
ID  - JCA_2011_18_4_JCA_2011_18_4_a13
ER  - 
%0 Journal Article
%A A. Seeger
%T Epigraphical Cones I
%J Journal of convex analysis
%D 2011
%P 1171-1196
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a13/
%F JCA_2011_18_4_JCA_2011_18_4_a13
A. Seeger. Epigraphical Cones I. Journal of convex analysis, Tome 18 (2011) no. 4, pp. 1171-1196. http://geodesic.mathdoc.fr/item/JCA_2011_18_4_JCA_2011_18_4_a13/