Subdifferential Analysis of the Van der Waerden Function
Journal of convex analysis, Tome 18 (2011) no. 3, pp. 699-705.

Voir la notice de l'article provenant de la source Heldermann Verlag

A concise and direct proof is given that H\"older subdifferentials of the (continuous but nowhere differentiable) Van der Waerden function $H(\cdot)$ exhibits the same behaviour as the Weierstrass function: There exists a countable dense set $\Gamma \subset R$ (the dyadic rationals) such that each H\"older subdifferential $\partial_\alpha H(x)$ is all of $\mathbb R$ for every $x\in\Gamma$, while $\partial_\alpha H(x)=\emptyset$ for $x\notin \Gamma$.
Classification : 26A27, 49J52
Mots-clés : Van der Waerden function, H\"older subdifferentials, nonsmooth analysis
@article{JCA_2011_18_3_JCA_2011_18_3_a6,
     author = {P. G\'ora and R. J. Stern},
     title = {Subdifferential {Analysis} of the {Van} der {Waerden} {Function}},
     journal = {Journal of convex analysis},
     pages = {699--705},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a6/}
}
TY  - JOUR
AU  - P. Góra
AU  - R. J. Stern
TI  - Subdifferential Analysis of the Van der Waerden Function
JO  - Journal of convex analysis
PY  - 2011
SP  - 699
EP  - 705
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a6/
ID  - JCA_2011_18_3_JCA_2011_18_3_a6
ER  - 
%0 Journal Article
%A P. Góra
%A R. J. Stern
%T Subdifferential Analysis of the Van der Waerden Function
%J Journal of convex analysis
%D 2011
%P 699-705
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a6/
%F JCA_2011_18_3_JCA_2011_18_3_a6
P. Góra; R. J. Stern. Subdifferential Analysis of the Van der Waerden Function. Journal of convex analysis, Tome 18 (2011) no. 3, pp. 699-705. http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a6/