Subdifferential Analysis of the Van der Waerden Function
Journal of convex analysis, Tome 18 (2011) no. 3, pp. 699-705
Voir la notice de l'article provenant de la source Heldermann Verlag
A concise and direct proof is given that H\"older subdifferentials of the (continuous but nowhere differentiable) Van der Waerden function $H(\cdot)$ exhibits the same behaviour as the Weierstrass function: There exists a countable dense set $\Gamma \subset R$ (the dyadic rationals) such that each H\"older subdifferential $\partial_\alpha H(x)$ is all of $\mathbb R$ for every $x\in\Gamma$, while $\partial_\alpha H(x)=\emptyset$ for $x\notin \Gamma$.
Classification :
26A27, 49J52
Mots-clés : Van der Waerden function, H\"older subdifferentials, nonsmooth analysis
Mots-clés : Van der Waerden function, H\"older subdifferentials, nonsmooth analysis
@article{JCA_2011_18_3_JCA_2011_18_3_a6,
author = {P. G\'ora and R. J. Stern},
title = {Subdifferential {Analysis} of the {Van} der {Waerden} {Function}},
journal = {Journal of convex analysis},
pages = {699--705},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a6/}
}
P. Góra; R. J. Stern. Subdifferential Analysis of the Van der Waerden Function. Journal of convex analysis, Tome 18 (2011) no. 3, pp. 699-705. http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a6/