On Multiple Solutions for Multivalued Elliptic Equations under Navier Boundary Conditions
Journal of convex analysis, Tome 18 (2011) no. 3, pp. 627-644.

Voir la notice de l'article provenant de la source Heldermann Verlag

We employ variational methods for non-smooth functionals to show existence of multiple solutions for multivalued fourth order elliptic equations under Navier boundary conditions. Our main result extends similar ones known for the Laplacian.
Classification : 35D05, 35J20
Mots-clés : Elliptic resonant problems, multiple solutions, non-smooth functionals
@article{JCA_2011_18_3_JCA_2011_18_3_a2,
     author = {C. O. Alves and J. Abrantes Santos and J. V. A. Goncalves},
     title = {On {Multiple} {Solutions} for {Multivalued} {Elliptic} {Equations} under {Navier} {Boundary} {Conditions}},
     journal = {Journal of convex analysis},
     pages = {627--644},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a2/}
}
TY  - JOUR
AU  - C. O. Alves
AU  - J. Abrantes Santos
AU  - J. V. A. Goncalves
TI  - On Multiple Solutions for Multivalued Elliptic Equations under Navier Boundary Conditions
JO  - Journal of convex analysis
PY  - 2011
SP  - 627
EP  - 644
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a2/
ID  - JCA_2011_18_3_JCA_2011_18_3_a2
ER  - 
%0 Journal Article
%A C. O. Alves
%A J. Abrantes Santos
%A J. V. A. Goncalves
%T On Multiple Solutions for Multivalued Elliptic Equations under Navier Boundary Conditions
%J Journal of convex analysis
%D 2011
%P 627-644
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a2/
%F JCA_2011_18_3_JCA_2011_18_3_a2
C. O. Alves; J. Abrantes Santos; J. V. A. Goncalves. On Multiple Solutions for Multivalued Elliptic Equations under Navier Boundary Conditions. Journal of convex analysis, Tome 18 (2011) no. 3, pp. 627-644. http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a2/