The Gelfand Integral for Multi-Valued Functions
Journal of convex analysis, Tome 18 (2011) no. 3, pp. 873-895
Voir la notice de l'article provenant de la source Heldermann Verlag
We study the existence of w*-scalarly measurable selectors and almost selectors for w*-scalarly measurable multi-functions with values in dual Banach spaces. These selection results are used to study Gelfand and Dunford integrals for multi-functions: our non separable setting extends previous studies that have been done for separable Banach spaces. Pettis integral for multi-functions, already studied by different authors, naturally appears as a particular case of Dunford integral. We also study when the Gelfand integral of a multi-function is not only w*-compact but w-compact.
Classification :
28B05, 28B20, 46G10
Mots-clés : Multi-function, measurable selector, Gelfand integral for multi-functions, Dunford integral for multi-functions, Pettis integral for multi-functions
Mots-clés : Multi-function, measurable selector, Gelfand integral for multi-functions, Dunford integral for multi-functions, Pettis integral for multi-functions
@article{JCA_2011_18_3_JCA_2011_18_3_a17,
author = {B. Cascales and V. Kadets and J. Rodr{\'\i}guez},
title = {The {Gelfand} {Integral} for {Multi-Valued} {Functions}},
journal = {Journal of convex analysis},
pages = {873--895},
publisher = {mathdoc},
volume = {18},
number = {3},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a17/}
}
TY - JOUR AU - B. Cascales AU - V. Kadets AU - J. Rodríguez TI - The Gelfand Integral for Multi-Valued Functions JO - Journal of convex analysis PY - 2011 SP - 873 EP - 895 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a17/ ID - JCA_2011_18_3_JCA_2011_18_3_a17 ER -
B. Cascales; V. Kadets; J. Rodríguez. The Gelfand Integral for Multi-Valued Functions. Journal of convex analysis, Tome 18 (2011) no. 3, pp. 873-895. http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a17/