Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces
Journal of convex analysis, Tome 18 (2011) no. 3, pp. 769-81.

Voir la notice de l'article provenant de la source Heldermann Verlag

There is a rich literature describing integrability of multifunctions that take weakly compact convex subsets of a separable Banach space as their values. Most of the papers concern the Bochner type integration, but there is also quite a number of papers dealing with the Pettis integral. On the other hand almost nothing is known in case of non-separable Banach spaces. Only recently the papers of C. Cascales, V. Kadets and J. Rodriguez ["Measurable selectors and set-valued Pettis integral in non-separable Banach spaces", J. Functional Analysis 256 (2009) 673--699; "Measurability and selections of multifunctions in Banach spaces", J. Convex Analysis 17 (2010) 229--240] have been published, where the authors proved the existence of scalarly measurable selections of scalarly measurable multifunctions with weakly compact values. The aim of this paper to fill in partially that gap by presenting a number of theorems that characterize Pettis integrable multifunctions with (weakly) compact non-separable sets as their values. Having applied the above results, I obtained a few convergence theorems, that generalize results known in case of Pettis integrable functions and in case of separably valued multifunctions.
Classification : 28B20, 28B05, 46G10, 54C60
Mots-clés : Multifunctions, multimeasures, set-valued Pettis integral, support functions, selections
@article{JCA_2011_18_3_JCA_2011_18_3_a11,
     author = {K. Musial},
     title = {Pettis {Integrability} of {Multifunctions} with {Values} in {Arbitrary} {Banach} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {769--81},
     publisher = {mathdoc},
     volume = {18},
     number = {3},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a11/}
}
TY  - JOUR
AU  - K. Musial
TI  - Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces
JO  - Journal of convex analysis
PY  - 2011
SP  - 769
EP  - 81
VL  - 18
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a11/
ID  - JCA_2011_18_3_JCA_2011_18_3_a11
ER  - 
%0 Journal Article
%A K. Musial
%T Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces
%J Journal of convex analysis
%D 2011
%P 769-81
%V 18
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a11/
%F JCA_2011_18_3_JCA_2011_18_3_a11
K. Musial. Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces. Journal of convex analysis, Tome 18 (2011) no. 3, pp. 769-81. http://geodesic.mathdoc.fr/item/JCA_2011_18_3_JCA_2011_18_3_a11/