Convex Sets and Minimal Sublinear Functions
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 427-432.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show that, given a closed convex set $K$ containing the origin in its interior, the support function of the set $\{y\in K^* \mid \mbox{ there exists } x\in K\mbox{ such that } \langle x,y \rangle =1\}$ is the pointwise smallest among all sublinear functions $\sigma$ such that $K=\{x \mid \sigma(x)\leq 1\}$.
@article{JCA_2011_18_2_JCA_2011_18_2_a9,
     author = {A. Basu and G. Cornu\'ejols and G. Zambelli},
     title = {Convex {Sets} and {Minimal} {Sublinear} {Functions}},
     journal = {Journal of convex analysis},
     pages = {427--432},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/}
}
TY  - JOUR
AU  - A. Basu
AU  - G. Cornuéjols
AU  - G. Zambelli
TI  - Convex Sets and Minimal Sublinear Functions
JO  - Journal of convex analysis
PY  - 2011
SP  - 427
EP  - 432
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/
ID  - JCA_2011_18_2_JCA_2011_18_2_a9
ER  - 
%0 Journal Article
%A A. Basu
%A G. Cornuéjols
%A G. Zambelli
%T Convex Sets and Minimal Sublinear Functions
%J Journal of convex analysis
%D 2011
%P 427-432
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/
%F JCA_2011_18_2_JCA_2011_18_2_a9
A. Basu; G. Cornuéjols; G. Zambelli. Convex Sets and Minimal Sublinear Functions. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 427-432. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/