Convex Sets and Minimal Sublinear Functions
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 427-432
Voir la notice de l'article provenant de la source Heldermann Verlag
We show that, given a closed convex set $K$ containing the origin in its interior, the support function of the set $\{y\in K^* \mid \mbox{ there exists } x\in K\mbox{ such that } \langle x,y \rangle =1\}$ is the pointwise smallest among all sublinear functions $\sigma$ such that $K=\{x \mid \sigma(x)\leq 1\}$.
@article{JCA_2011_18_2_JCA_2011_18_2_a9,
author = {A. Basu and G. Cornu\'ejols and G. Zambelli},
title = {Convex {Sets} and {Minimal} {Sublinear} {Functions}},
journal = {Journal of convex analysis},
pages = {427--432},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/}
}
TY - JOUR AU - A. Basu AU - G. Cornuéjols AU - G. Zambelli TI - Convex Sets and Minimal Sublinear Functions JO - Journal of convex analysis PY - 2011 SP - 427 EP - 432 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/ ID - JCA_2011_18_2_JCA_2011_18_2_a9 ER -
A. Basu; G. Cornuéjols; G. Zambelli. Convex Sets and Minimal Sublinear Functions. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 427-432. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a9/