Ball Proximinal Spaces
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 353-366
Voir la notice de l'article provenant de la source Heldermann Verlag
The notion of ball proximinality and the strong ball proximinality were recently introduced by P. Bandyopadhyay, Bor-Luh Lin and T. S. S. R. K. Rao ["Ball proximinality in Banach spaces", Banach spaces and their Applications in Analysis, Proceedings of the Conference in Honor of Nigel Kalton's 60-th Birthday, B. Randrianantoanina et al. (eds.), Berlin: Walter de Gruyter, (2007) 251--264]. We prove that spaces with strong 3/2-ball property are ball proximinal and in particular M-ideals are ball proximinal. We show that the problem of ball proximinality of hyperplanes is related to the problem of proximinality of certain convex sets determined by them.
Mots-clés :
Proximal, ball proximal, strongly ball proximal
@article{JCA_2011_18_2_JCA_2011_18_2_a2,
author = {V. Indumathi and S. Lalithambigai},
title = {Ball {Proximinal} {Spaces}},
journal = {Journal of convex analysis},
pages = {353--366},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a2/}
}
V. Indumathi; S. Lalithambigai. Ball Proximinal Spaces. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a2/