Ball Proximinal Spaces
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 353-366.

Voir la notice de l'article provenant de la source Heldermann Verlag

The notion of ball proximinality and the strong ball proximinality were recently introduced by P. Bandyopadhyay, Bor-Luh Lin and T. S. S. R. K. Rao ["Ball proximinality in Banach spaces", Banach spaces and their Applications in Analysis, Proceedings of the Conference in Honor of Nigel Kalton's 60-th Birthday, B. Randrianantoanina et al. (eds.), Berlin: Walter de Gruyter, (2007) 251--264]. We prove that spaces with strong 3/2-ball property are ball proximinal and in particular M-ideals are ball proximinal. We show that the problem of ball proximinality of hyperplanes is related to the problem of proximinality of certain convex sets determined by them.
Mots-clés : Proximal, ball proximal, strongly ball proximal
@article{JCA_2011_18_2_JCA_2011_18_2_a2,
     author = {V. Indumathi and S. Lalithambigai},
     title = {Ball {Proximinal} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {353--366},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a2/}
}
TY  - JOUR
AU  - V. Indumathi
AU  - S. Lalithambigai
TI  - Ball Proximinal Spaces
JO  - Journal of convex analysis
PY  - 2011
SP  - 353
EP  - 366
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a2/
ID  - JCA_2011_18_2_JCA_2011_18_2_a2
ER  - 
%0 Journal Article
%A V. Indumathi
%A S. Lalithambigai
%T Ball Proximinal Spaces
%J Journal of convex analysis
%D 2011
%P 353-366
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a2/
%F JCA_2011_18_2_JCA_2011_18_2_a2
V. Indumathi; S. Lalithambigai. Ball Proximinal Spaces. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 353-366. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a2/