On Surjectivity Results for Maximal Monotone Operators of Type (D)
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 545-576
Voir la notice de l'article provenant de la source Heldermann Verlag
A generalization of Rockafellar's surjectivity theorem was provided by J.E. Martínez-Legaz in a recent article ["Some generalizations of Rockafellar's surjectivity theorem", Pac. J. Optim. 4 (2008) 527-548], replacing the duality mapping by any maximal monotone operator having finite-valued Fitzpatrick function. The present paper extends this result to the nonreflexive setting for maximal monotone operators of type (D) and refines the finite-valuedness condition on the Fitzpatrick function. Moreover, a characterization of surjectivity properties for the sum of two maximal monotone operators of type (D) in terms of Fenchel duality is given.
Classification :
47H05, 46T99, 47N10
Mots-clés : Monotone operator, type (D), convex representation, bidual, surjectivity, Fenchel duality
Mots-clés : Monotone operator, type (D), convex representation, bidual, surjectivity, Fenchel duality
@article{JCA_2011_18_2_JCA_2011_18_2_a18,
author = {M. Rocco and J. E. Mart{\'\i}nez-Legaz},
title = {On {Surjectivity} {Results} for {Maximal} {Monotone} {Operators} of {Type} {(D)}},
journal = {Journal of convex analysis},
pages = {545--576},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a18/}
}
TY - JOUR AU - M. Rocco AU - J. E. Martínez-Legaz TI - On Surjectivity Results for Maximal Monotone Operators of Type (D) JO - Journal of convex analysis PY - 2011 SP - 545 EP - 576 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a18/ ID - JCA_2011_18_2_JCA_2011_18_2_a18 ER -
M. Rocco; J. E. Martínez-Legaz. On Surjectivity Results for Maximal Monotone Operators of Type (D). Journal of convex analysis, Tome 18 (2011) no. 2, pp. 545-576. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a18/