Slices in the Unit Ball of the Symmetric Tensor Product of a Banach Space
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 513-528.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove that every infinite-dimensional $C^*$-algebra $X$ satisfies that every slice of the unit ball of $\widehat{\bigotimes }_{N,s,\pi} X$ ($N$-fold projective symmetric tensor product of $X$) has diameter two. We deduce that every infinite-dimensional Banach space $X$ whose dual is an $L_1$-space satisfies the same result. As a consequence, if $X$ is either a $C^*$-algebra or either a predual of an $L_1$-space, then the space of all $N$-homogeneous polynomials on $X$, $ {\mathcal{P}} ^N (X)$, is extremely rough, whenever $X$ is infinite-dimensional. If $Y$ is a predual of a von Neumann algebra, then $Y$ is infinite-dimensional if, and only if, every $w^\ast$-slice of the unit ball of ${\mathcal{P}}^{N}_{I} (Y)$ (the space of integral $N$-homogeneous polynomials on $Y$) has diameter two. As a consequence, under the previous assumptions, the $N$-fold symmetric injective tensor product of $Y$ is extremely rough. Indeed, this isometric condition characterizes infinite-dimensional spaces in the class of preduals of von Neumann algebras.
Classification : 46B20, 46B25, 46B28
Mots-clés : Banach spaces, slice, homogeneous polynomial, integral polynomial, symmetric projective tensor product, symmetric injective tensor product, C-star-algebra
@article{JCA_2011_18_2_JCA_2011_18_2_a16,
     author = {M. D. Acosta and J. Becerra Guerrero},
     title = {Slices in the {Unit} {Ball} of the {Symmetric} {Tensor} {Product} of a {Banach} {Space}},
     journal = {Journal of convex analysis},
     pages = {513--528},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a16/}
}
TY  - JOUR
AU  - M. D. Acosta
AU  - J. Becerra Guerrero
TI  - Slices in the Unit Ball of the Symmetric Tensor Product of a Banach Space
JO  - Journal of convex analysis
PY  - 2011
SP  - 513
EP  - 528
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a16/
ID  - JCA_2011_18_2_JCA_2011_18_2_a16
ER  - 
%0 Journal Article
%A M. D. Acosta
%A J. Becerra Guerrero
%T Slices in the Unit Ball of the Symmetric Tensor Product of a Banach Space
%J Journal of convex analysis
%D 2011
%P 513-528
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a16/
%F JCA_2011_18_2_JCA_2011_18_2_a16
M. D. Acosta; J. Becerra Guerrero. Slices in the Unit Ball of the Symmetric Tensor Product of a Banach Space. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 513-528. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a16/