On Approximately h-Convex Functions
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 447-454.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\R{\mathbb R} \def\Q{\mathbb Q} A real valued function $f\colon D\to \R$ defined on an open convex subset $D$ of a normed space $X$ is called \emph{rationally $(h,d)$-convex} if it satisfies $$ f\left(tx + (1-t)y \right) \leq h(t) f(x) + h(1-t) f(y) + d(x,y) $$ for all $x,y\in D$ and $t\in \Q \cap [0,1]$, where $d\colon X \times X \to \R$ and $h:[0,1] \to \R$ are given functions. \par Our main result is of Bernstein-Doetsch type. Namely, we prove that if $f$ is locally bounded from above at a point of $D$ and rationally $(h,d)$-convex then it is continuous and $(h,d)$-convex.
Classification : 26A51, 26B25, 39B62
Mots-clés : Convexity, approximate convexity, h-convexity, s-convexity, Bernstein-Doetsch theorem, regularity properties of generalized convex functions
@article{JCA_2011_18_2_JCA_2011_18_2_a11,
     author = {P. Burai and A. H\'azy},
     title = {On {Approximately} {h-Convex} {Functions}},
     journal = {Journal of convex analysis},
     pages = {447--454},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a11/}
}
TY  - JOUR
AU  - P. Burai
AU  - A. Házy
TI  - On Approximately h-Convex Functions
JO  - Journal of convex analysis
PY  - 2011
SP  - 447
EP  - 454
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a11/
ID  - JCA_2011_18_2_JCA_2011_18_2_a11
ER  - 
%0 Journal Article
%A P. Burai
%A A. Házy
%T On Approximately h-Convex Functions
%J Journal of convex analysis
%D 2011
%P 447-454
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a11/
%F JCA_2011_18_2_JCA_2011_18_2_a11
P. Burai; A. Házy. On Approximately h-Convex Functions. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 447-454. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a11/