Asplund Sets and Metrizability for the Polynomial Topology
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 433-446
Voir la notice de l'article provenant de la source Heldermann Verlag
The theme of this paper is the study of the separability of subspaces of holomorphic functions respect to the convergence over a given set and its connection with the metrizability of the polynomial topology. A notion closely related to this matter is that of Asplund set. Our discussion includes an affirmative answer to a question of Globevnik about interpolating sequences. We also consider the interplay between polynomials and Asplund sets and derive some consequences of it. Among them we obtain a characterization of Radon-Nikodym composition operators on algebras of bounded analytic functions.
Classification :
46B22, 46G20, 46G10, 46J15, 47B33, 65D05
Mots-clés : Algebras of analytic functions, Asplund set, composition operator, interpolation, polynomial topology, Radon-Nikodym property
Mots-clés : Algebras of analytic functions, Asplund set, composition operator, interpolation, polynomial topology, Radon-Nikodym property
@article{JCA_2011_18_2_JCA_2011_18_2_a10,
author = {P. Galindo and A Miralles},
title = {Asplund {Sets} and {Metrizability} for the {Polynomial} {Topology}},
journal = {Journal of convex analysis},
pages = {433--446},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/}
}
TY - JOUR AU - P. Galindo AU - A Miralles TI - Asplund Sets and Metrizability for the Polynomial Topology JO - Journal of convex analysis PY - 2011 SP - 433 EP - 446 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/ ID - JCA_2011_18_2_JCA_2011_18_2_a10 ER -
P. Galindo; A Miralles. Asplund Sets and Metrizability for the Polynomial Topology. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 433-446. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/