Asplund Sets and Metrizability for the Polynomial Topology
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 433-446.

Voir la notice de l'article provenant de la source Heldermann Verlag

The theme of this paper is the study of the separability of subspaces of holomorphic functions respect to the convergence over a given set and its connection with the metrizability of the polynomial topology. A notion closely related to this matter is that of Asplund set. Our discussion includes an affirmative answer to a question of Globevnik about interpolating sequences. We also consider the interplay between polynomials and Asplund sets and derive some consequences of it. Among them we obtain a characterization of Radon-Nikodym composition operators on algebras of bounded analytic functions.
Classification : 46B22, 46G20, 46G10, 46J15, 47B33, 65D05
Mots-clés : Algebras of analytic functions, Asplund set, composition operator, interpolation, polynomial topology, Radon-Nikodym property
@article{JCA_2011_18_2_JCA_2011_18_2_a10,
     author = {P. Galindo and A Miralles},
     title = {Asplund {Sets} and {Metrizability} for the {Polynomial} {Topology}},
     journal = {Journal of convex analysis},
     pages = {433--446},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/}
}
TY  - JOUR
AU  - P. Galindo
AU  - A Miralles
TI  - Asplund Sets and Metrizability for the Polynomial Topology
JO  - Journal of convex analysis
PY  - 2011
SP  - 433
EP  - 446
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/
ID  - JCA_2011_18_2_JCA_2011_18_2_a10
ER  - 
%0 Journal Article
%A P. Galindo
%A A Miralles
%T Asplund Sets and Metrizability for the Polynomial Topology
%J Journal of convex analysis
%D 2011
%P 433-446
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/
%F JCA_2011_18_2_JCA_2011_18_2_a10
P. Galindo; A Miralles. Asplund Sets and Metrizability for the Polynomial Topology. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 433-446. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a10/