Type One Functions and Voronoï's Theorem
Journal of convex analysis, Tome 18 (2011) no. 2, pp. 341-351
Voir la notice de l'article provenant de la source Heldermann Verlag
Voronoï's theorem characterizes local maxima of the Hermite invariant m / det1/n defined on the open cone of positive definite n by n symmetric matrices, where m denotes the arithmetical minimum function. In this paper, we extend Voronoï's theorem to functions of the form m / ϕ when ϕ is a type one function. Moreover, we study the Hermite like constant defined from m / ϕ.
@article{JCA_2011_18_2_JCA_2011_18_2_a1,
author = {K. Sawatani and T. Watanabe},
title = {Type {One} {Functions} and {Vorono{\"\i}'s} {Theorem}},
journal = {Journal of convex analysis},
pages = {341--351},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a1/}
}
K. Sawatani; T. Watanabe. Type One Functions and Voronoï's Theorem. Journal of convex analysis, Tome 18 (2011) no. 2, pp. 341-351. http://geodesic.mathdoc.fr/item/JCA_2011_18_2_JCA_2011_18_2_a1/