On the Strong Law of Large Numbers in Spaces of Compact Sets
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 285-3
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\bE{{\mathbb E}} \def\bR{{\mathbb R}} \def\cK{{\cal K}} \def\fY{{\mathfrak Y}} Let $\fY$ be the space of all nonempty compact subsets of $\bR^d$ and let $\cK(\fY)$ be the space of all nonempty compact subsets of $\fY$. For a random set with values in $\cK(\fY)$, after defining the expectation, we establish a version of the strong law of large numbers. Some related results concerning the case of nonempty compact convex subsets of a Banach space $\bE$ are included.
@article{JCA_2011_18_1_JCA_2011_18_1_a15,
author = {F. S. de Blasi and L. Tomassini},
title = {On the {Strong} {Law} of {Large} {Numbers} in {Spaces} of {Compact} {Sets}},
journal = {Journal of convex analysis},
pages = {285--3},
publisher = {mathdoc},
volume = {18},
number = {1},
year = {2011},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a15/}
}
TY - JOUR AU - F. S. de Blasi AU - L. Tomassini TI - On the Strong Law of Large Numbers in Spaces of Compact Sets JO - Journal of convex analysis PY - 2011 SP - 285 EP - 3 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a15/ ID - JCA_2011_18_1_JCA_2011_18_1_a15 ER -
F. S. de Blasi; L. Tomassini. On the Strong Law of Large Numbers in Spaces of Compact Sets. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 285-3. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a15/