On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 37-58.

Voir la notice de l'article provenant de la source Heldermann Verlag

We report on our attempts to disprove the implication from rank-one convexity to quasiconvexity for 2 × 2 symmetric matrices. As a by-product, we have reached a characterization of some laminates, belonging to a special class which we call 3-edge-laminates.
Classification : 49J10, 26B25
Mots-clés : Vector calculus of variations, quasiconvexity, polyconvexity, rank-one convexity, homogeneous gradient Young measure, laminate
@article{JCA_2011_18_1_JCA_2011_18_1_a1,
     author = {L. Bandeira and A. Ornelas},
     title = {On the {Characterization} of a {Class} of {Laminates} for 2 {\texttimes} 2 {Symmetric} {Gradients}},
     journal = {Journal of convex analysis},
     pages = {37--58},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/}
}
TY  - JOUR
AU  - L. Bandeira
AU  - A. Ornelas
TI  - On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients
JO  - Journal of convex analysis
PY  - 2011
SP  - 37
EP  - 58
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/
ID  - JCA_2011_18_1_JCA_2011_18_1_a1
ER  - 
%0 Journal Article
%A L. Bandeira
%A A. Ornelas
%T On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients
%J Journal of convex analysis
%D 2011
%P 37-58
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/
%F JCA_2011_18_1_JCA_2011_18_1_a1
L. Bandeira; A. Ornelas. On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 37-58. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/