On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 37-58
Cet article a éte moissonné depuis la source Heldermann Verlag
We report on our attempts to disprove the implication from rank-one convexity to quasiconvexity for 2 × 2 symmetric matrices. As a by-product, we have reached a characterization of some laminates, belonging to a special class which we call 3-edge-laminates.
Classification :
49J10, 26B25
Mots-clés : Vector calculus of variations, quasiconvexity, polyconvexity, rank-one convexity, homogeneous gradient Young measure, laminate
Mots-clés : Vector calculus of variations, quasiconvexity, polyconvexity, rank-one convexity, homogeneous gradient Young measure, laminate
@article{JCA_2011_18_1_JCA_2011_18_1_a1,
author = {L. Bandeira and A. Ornelas},
title = {On the {Characterization} of a {Class} of {Laminates} for 2 {\texttimes} 2 {Symmetric} {Gradients}},
journal = {Journal of convex analysis},
pages = {37--58},
year = {2011},
volume = {18},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/}
}
TY - JOUR AU - L. Bandeira AU - A. Ornelas TI - On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients JO - Journal of convex analysis PY - 2011 SP - 37 EP - 58 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/ ID - JCA_2011_18_1_JCA_2011_18_1_a1 ER -
L. Bandeira; A. Ornelas. On the Characterization of a Class of Laminates for 2 × 2 Symmetric Gradients. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 37-58. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a1/