The Baillon-Haddad Theorem Revisited
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 781-787.

Voir la notice de l'article provenant de la source Heldermann Verlag

J.-B. Baillon and G. Haddad ["Quelque propriétés des opérateurs angle-bornés et n-cycliquement monotones", Israel J. Math. 26 (1977) 137--150] proved that if the gradient of a convex and continously differentiable function is nonexpansive, then it is actually firmly nonexpansive. This result, which has become known as the Baillon-Haddad theorem, has found many applications in optimization and numerical functional analysis. In this note, we propose short alternative proofs of this result and strengthen its conclusion.
Classification : 47H09, 90C25, 26A51, 26B25, 46C05, 47H05, 52A41
Mots-clés : Backward-backward splitting, Bregman distance, cocoercivity, convex function, Dunn property, firmly nonexpansive, forward-backward splitting, gradient, inverse strongly monotone, Moreau envelope, proximal mapping, proximity operator
@article{JCA_2010_17_3_JCA_2010_17_3_a5,
     author = {H. H. Bauschke and P. L. Combettes},
     title = {The {Baillon-Haddad} {Theorem} {Revisited}},
     journal = {Journal of convex analysis},
     pages = {781--787},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a5/}
}
TY  - JOUR
AU  - H. H. Bauschke
AU  - P. L. Combettes
TI  - The Baillon-Haddad Theorem Revisited
JO  - Journal of convex analysis
PY  - 2010
SP  - 781
EP  - 787
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a5/
ID  - JCA_2010_17_3_JCA_2010_17_3_a5
ER  - 
%0 Journal Article
%A H. H. Bauschke
%A P. L. Combettes
%T The Baillon-Haddad Theorem Revisited
%J Journal of convex analysis
%D 2010
%P 781-787
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a5/
%F JCA_2010_17_3_JCA_2010_17_3_a5
H. H. Bauschke; P. L. Combettes. The Baillon-Haddad Theorem Revisited. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 781-787. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a5/