The Baillon-Haddad Theorem Revisited
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 781-787
Cet article a éte moissonné depuis la source Heldermann Verlag
J.-B. Baillon and G. Haddad ["Quelque propriétés des opérateurs angle-bornés et n-cycliquement monotones", Israel J. Math. 26 (1977) 137--150] proved that if the gradient of a convex and continously differentiable function is nonexpansive, then it is actually firmly nonexpansive. This result, which has become known as the Baillon-Haddad theorem, has found many applications in optimization and numerical functional analysis. In this note, we propose short alternative proofs of this result and strengthen its conclusion.
Classification :
47H09, 90C25, 26A51, 26B25, 46C05, 47H05, 52A41
Mots-clés : Backward-backward splitting, Bregman distance, cocoercivity, convex function, Dunn property, firmly nonexpansive, forward-backward splitting, gradient, inverse strongly monotone, Moreau envelope, proximal mapping, proximity operator
Mots-clés : Backward-backward splitting, Bregman distance, cocoercivity, convex function, Dunn property, firmly nonexpansive, forward-backward splitting, gradient, inverse strongly monotone, Moreau envelope, proximal mapping, proximity operator
@article{JCA_2010_17_3_JCA_2010_17_3_a5,
author = {H. H. Bauschke and P. L. Combettes},
title = {The {Baillon-Haddad} {Theorem} {Revisited}},
journal = {Journal of convex analysis},
pages = {781--787},
year = {2010},
volume = {17},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a5/}
}
H. H. Bauschke; P. L. Combettes. The Baillon-Haddad Theorem Revisited. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 781-787. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a5/