Evolution Equations for Maximal Monotone Operators: Asymptotic Analysis in Continuous and Discrete Time
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1113-1163
Voir la notice de l'article provenant de la source Heldermann Verlag
This survey is devoted to the asymptotic behavior of solutions of evolution equations generated by maximal monotone operators in Hilbert spaces. The emphasis is in the comparison of continuous time trajectories to sequences generated by implicit or explicit discrete time schemes. The analysis covers weak convergence for the average process, for the process itself and strong convergence. The aim is to highlight the main ideas and unifying the proofs. Furthermore the connection is made with the analysis in terms of almost orbits that allows for a broader scope.
@article{JCA_2010_17_3_JCA_2010_17_3_a22,
author = {J. Peypouquet and S. Sorin},
title = {Evolution {Equations} for {Maximal} {Monotone} {Operators:} {Asymptotic} {Analysis} in {Continuous} and {Discrete} {Time}},
journal = {Journal of convex analysis},
pages = {1113--1163},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a22/}
}
TY - JOUR AU - J. Peypouquet AU - S. Sorin TI - Evolution Equations for Maximal Monotone Operators: Asymptotic Analysis in Continuous and Discrete Time JO - Journal of convex analysis PY - 2010 SP - 1113 EP - 1163 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a22/ ID - JCA_2010_17_3_JCA_2010_17_3_a22 ER -
%0 Journal Article %A J. Peypouquet %A S. Sorin %T Evolution Equations for Maximal Monotone Operators: Asymptotic Analysis in Continuous and Discrete Time %J Journal of convex analysis %D 2010 %P 1113-1163 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a22/ %F JCA_2010_17_3_JCA_2010_17_3_a22
J. Peypouquet; S. Sorin. Evolution Equations for Maximal Monotone Operators: Asymptotic Analysis in Continuous and Discrete Time. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1113-1163. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a22/