On Gossez Type (D) Maximal Monotone Operators
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1077-1088.

Voir la notice de l'article provenant de la source Heldermann Verlag

Gossez type (D) operators are defined in non-reflexive Banach spaces and share with the subdifferential operator a topological related property, characterized by bounded nets. In this work we present new properties and characterizations of these operators. The class (NI) was defined after Gossez defined the class (D) and seemed to generalize the class (D). One of our main results is the proof that these classes, type (D) and (NI), are identical.
Classification : 47H05, 46T99, 47N10
Mots-clés : Maximal monotone operators, Gossez type (D) operators, non-reflexive Banach spaces, nets, Fitzpatrick functions
@article{JCA_2010_17_3_JCA_2010_17_3_a20,
     author = {M. Marques Alves and B. F. Svaiter},
     title = {On {Gossez} {Type} {(D)} {Maximal} {Monotone} {Operators}},
     journal = {Journal of convex analysis},
     pages = {1077--1088},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a20/}
}
TY  - JOUR
AU  - M. Marques Alves
AU  - B. F. Svaiter
TI  - On Gossez Type (D) Maximal Monotone Operators
JO  - Journal of convex analysis
PY  - 2010
SP  - 1077
EP  - 1088
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a20/
ID  - JCA_2010_17_3_JCA_2010_17_3_a20
ER  - 
%0 Journal Article
%A M. Marques Alves
%A B. F. Svaiter
%T On Gossez Type (D) Maximal Monotone Operators
%J Journal of convex analysis
%D 2010
%P 1077-1088
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a20/
%F JCA_2010_17_3_JCA_2010_17_3_a20
M. Marques Alves; B. F. Svaiter. On Gossez Type (D) Maximal Monotone Operators. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1077-1088. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a20/