A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1057-1075
Voir la notice de l'article provenant de la source Heldermann Verlag
In the infinite dimensional setting, we provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function. Various applications to the ε-subdifferential calculus are also given.
Classification :
90C48, 90C46, 49N15, 90C25
Mots-clés : Relaxed minimization problem, approximate minima, epsilon-subdifferential calculus, Legendre-Fenchel conjugate
Mots-clés : Relaxed minimization problem, approximate minima, epsilon-subdifferential calculus, Legendre-Fenchel conjugate
@article{JCA_2010_17_3_JCA_2010_17_3_a19,
author = {M. A. L\'opez and M. Volle},
title = {A {Formula} for the {Set} of {Optimal} {Solutions} of a {Relaxed} {Minimization} {Problem.} {Applications} to {Subdifferential} {Calculus}},
journal = {Journal of convex analysis},
pages = {1057--1075},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/}
}
TY - JOUR AU - M. A. López AU - M. Volle TI - A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus JO - Journal of convex analysis PY - 2010 SP - 1057 EP - 1075 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/ ID - JCA_2010_17_3_JCA_2010_17_3_a19 ER -
%0 Journal Article %A M. A. López %A M. Volle %T A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus %J Journal of convex analysis %D 2010 %P 1057-1075 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/ %F JCA_2010_17_3_JCA_2010_17_3_a19
M. A. López; M. Volle. A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1057-1075. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/