A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1057-1075.

Voir la notice de l'article provenant de la source Heldermann Verlag

In the infinite dimensional setting, we provide a general formula for the optimal set of a relaxed minimization problem in terms of the approximate minima of the data function. Various applications to the ε-subdifferential calculus are also given.
Classification : 90C48, 90C46, 49N15, 90C25
Mots-clés : Relaxed minimization problem, approximate minima, epsilon-subdifferential calculus, Legendre-Fenchel conjugate
@article{JCA_2010_17_3_JCA_2010_17_3_a19,
     author = {M. A. L\'opez and M. Volle},
     title = {A {Formula} for the {Set} of {Optimal} {Solutions} of a {Relaxed} {Minimization} {Problem.} {Applications} to {Subdifferential} {Calculus}},
     journal = {Journal of convex analysis},
     pages = {1057--1075},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/}
}
TY  - JOUR
AU  - M. A. López
AU  - M. Volle
TI  - A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus
JO  - Journal of convex analysis
PY  - 2010
SP  - 1057
EP  - 1075
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/
ID  - JCA_2010_17_3_JCA_2010_17_3_a19
ER  - 
%0 Journal Article
%A M. A. López
%A M. Volle
%T A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus
%J Journal of convex analysis
%D 2010
%P 1057-1075
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/
%F JCA_2010_17_3_JCA_2010_17_3_a19
M. A. López; M. Volle. A Formula for the Set of Optimal Solutions of a Relaxed Minimization Problem. Applications to Subdifferential Calculus. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 1057-1075. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a19/