The Monge-Kantorovich Problem for Distributions and Applications
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 925-943.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\xsp{{\bf X}(\Omega)} \def\x0s{{\bf X}_0^\sharp (\Omega)} We study the Kantorovich-Rubinstein transhipment problem when the difference between the source and the target is not anymore a balanced measure but belongs to a suitable subspace $\xsp$ of first order distribution. A particular subclass $\x0s$ of such distributions will be considered which includes the infinite sums of dipoles $\sum_k(\delta_{p_k}-\delta_{n_k})$ studied recently by A. C. Ponce ["On the distributions of the form $\sum_i (\delta_{p_i}-\delta_{n_i})$", C. R. Math. Acad. Sci. Paris 336 (2003) 571--576; and "On the distributions of the form $\sum_i (\delta_{p_i}-\delta_{n_i})$", J. Funct. Anal. 210 (2004) 391--435]. In spite of this weakened regularity, it is shown that an optimal transport density still exists among nonnegative finite measures. Some geometric properties of the Banach spaces $\xsp$ and $\x0s$ can be then deduced.
Classification : 49J45, 49J20, 82C70, 90B06
Mots-clés : Monge-Kantorovich problem, optimal transportation, transhipment problem, flat norm, minimal connections, Jacobians
@article{JCA_2010_17_3_JCA_2010_17_3_a12,
     author = {G. Bouchitt\'e and G. Buttazzo and L. De Pascale},
     title = {The {Monge-Kantorovich} {Problem} for {Distributions} and {Applications}},
     journal = {Journal of convex analysis},
     pages = {925--943},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a12/}
}
TY  - JOUR
AU  - G. Bouchitté
AU  - G. Buttazzo
AU  - L. De Pascale
TI  - The Monge-Kantorovich Problem for Distributions and Applications
JO  - Journal of convex analysis
PY  - 2010
SP  - 925
EP  - 943
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a12/
ID  - JCA_2010_17_3_JCA_2010_17_3_a12
ER  - 
%0 Journal Article
%A G. Bouchitté
%A G. Buttazzo
%A L. De Pascale
%T The Monge-Kantorovich Problem for Distributions and Applications
%J Journal of convex analysis
%D 2010
%P 925-943
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a12/
%F JCA_2010_17_3_JCA_2010_17_3_a12
G. Bouchitté; G. Buttazzo; L. De Pascale. The Monge-Kantorovich Problem for Distributions and Applications. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 925-943. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a12/