Homogenization of Non-Linear Functionals with Laminate-Type Growth
Journal of convex analysis, Tome 17 (2010) no. 2, pp. 509-52.

Voir la notice de l'article provenant de la source Heldermann Verlag

The limit energy density, by Γ-convergence, of sequences of functionals whose densities satisfy a growth condition of order pj(x), depending on the laminate structure of the domain, is computed explicitly through a finite dimensional minimization problem.
Classification : 35A15, 49J40
Mots-clés : Gamma-convergence, p-Laplacian, Young measures
@article{JCA_2010_17_2_JCA_2010_17_2_a8,
     author = {H. Serrano},
     title = {Homogenization of {Non-Linear} {Functionals} with {Laminate-Type} {Growth}},
     journal = {Journal of convex analysis},
     pages = {509--52},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a8/}
}
TY  - JOUR
AU  - H. Serrano
TI  - Homogenization of Non-Linear Functionals with Laminate-Type Growth
JO  - Journal of convex analysis
PY  - 2010
SP  - 509
EP  - 52
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a8/
ID  - JCA_2010_17_2_JCA_2010_17_2_a8
ER  - 
%0 Journal Article
%A H. Serrano
%T Homogenization of Non-Linear Functionals with Laminate-Type Growth
%J Journal of convex analysis
%D 2010
%P 509-52
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a8/
%F JCA_2010_17_2_JCA_2010_17_2_a8
H. Serrano. Homogenization of Non-Linear Functionals with Laminate-Type Growth. Journal of convex analysis, Tome 17 (2010) no. 2, pp. 509-52. http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a8/