Homogenization of Non-Linear Functionals with Laminate-Type Growth
Journal of convex analysis, Tome 17 (2010) no. 2, pp. 509-52
Voir la notice de l'article provenant de la source Heldermann Verlag
The limit energy density, by Γ-convergence, of sequences of functionals whose densities satisfy a growth condition of order pj(x), depending on the laminate structure of the domain, is computed explicitly through a finite dimensional minimization problem.
Classification :
35A15, 49J40
Mots-clés : Gamma-convergence, p-Laplacian, Young measures
Mots-clés : Gamma-convergence, p-Laplacian, Young measures
@article{JCA_2010_17_2_JCA_2010_17_2_a8,
author = {H. Serrano},
title = {Homogenization of {Non-Linear} {Functionals} with {Laminate-Type} {Growth}},
journal = {Journal of convex analysis},
pages = {509--52},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a8/}
}
H. Serrano. Homogenization of Non-Linear Functionals with Laminate-Type Growth. Journal of convex analysis, Tome 17 (2010) no. 2, pp. 509-52. http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a8/