LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets
Journal of convex analysis, Tome 17 (2010) no. 2, pp. 535-551.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\closure}[1]{\overline{#1}} \newcommand{\chull}[1]{\text{{\bf co}}(#1)} \newcommand{\real}{{\mathbb R}} \newcommand{\set}[1]{{\cal #1}} We are motivated by the question of when a convex semialgebraic set in $\real^n$ is equal to the feasible set of a linear matrix inequality (LMI). Given a basic semialgebraic set, $\set{V}$, which is defined by quadratic polynomials, we restrict our attention to closure of its convex hull, namely $\closure{\chull{\set V}}$. Our main result is that $\closure{\chull{\set V}}$ is equal to the intersection of a finite number of LMI sets and the halfspaces supporting $\set V$ along a particular subset of the boundary of $\set V$. As a corollary, we show that in $\real^2$, the halfspaces of concern are finite in number, so that an LMI representation for $\closure{\chull{\set V}}$ always exists.
@article{JCA_2010_17_2_JCA_2010_17_2_a10,
     author = {U. Yildiran and I. E. Kose},
     title = {LMI {Representations} of the {Convex} {Hulls} of {Quadratic} {Basic} {Semialgebraic} {Sets}},
     journal = {Journal of convex analysis},
     pages = {535--551},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/}
}
TY  - JOUR
AU  - U. Yildiran
AU  - I. E. Kose
TI  - LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets
JO  - Journal of convex analysis
PY  - 2010
SP  - 535
EP  - 551
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/
ID  - JCA_2010_17_2_JCA_2010_17_2_a10
ER  - 
%0 Journal Article
%A U. Yildiran
%A I. E. Kose
%T LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets
%J Journal of convex analysis
%D 2010
%P 535-551
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/
%F JCA_2010_17_2_JCA_2010_17_2_a10
U. Yildiran; I. E. Kose. LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets. Journal of convex analysis, Tome 17 (2010) no. 2, pp. 535-551. http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/