LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets
Journal of convex analysis, Tome 17 (2010) no. 2, pp. 535-551
Voir la notice de l'article provenant de la source Heldermann Verlag
\newcommand{\closure}[1]{\overline{#1}} \newcommand{\chull}[1]{\text{{\bf co}}(#1)} \newcommand{\real}{{\mathbb R}} \newcommand{\set}[1]{{\cal #1}} We are motivated by the question of when a convex semialgebraic set in $\real^n$ is equal to the feasible set of a linear matrix inequality (LMI). Given a basic semialgebraic set, $\set{V}$, which is defined by quadratic polynomials, we restrict our attention to closure of its convex hull, namely $\closure{\chull{\set V}}$. Our main result is that $\closure{\chull{\set V}}$ is equal to the intersection of a finite number of LMI sets and the halfspaces supporting $\set V$ along a particular subset of the boundary of $\set V$. As a corollary, we show that in $\real^2$, the halfspaces of concern are finite in number, so that an LMI representation for $\closure{\chull{\set V}}$ always exists.
@article{JCA_2010_17_2_JCA_2010_17_2_a10,
author = {U. Yildiran and I. E. Kose},
title = {LMI {Representations} of the {Convex} {Hulls} of {Quadratic} {Basic} {Semialgebraic} {Sets}},
journal = {Journal of convex analysis},
pages = {535--551},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/}
}
TY - JOUR AU - U. Yildiran AU - I. E. Kose TI - LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets JO - Journal of convex analysis PY - 2010 SP - 535 EP - 551 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/ ID - JCA_2010_17_2_JCA_2010_17_2_a10 ER -
%0 Journal Article %A U. Yildiran %A I. E. Kose %T LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets %J Journal of convex analysis %D 2010 %P 535-551 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/ %F JCA_2010_17_2_JCA_2010_17_2_a10
U. Yildiran; I. E. Kose. LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets. Journal of convex analysis, Tome 17 (2010) no. 2, pp. 535-551. http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a10/