Non Maximal Cyclically Monotone Graphs and Construction of a Bipotential for the Coulomb's Dry Friction Law
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 81-94.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show a surprising connection between a property of the inf convolution of a family of convex lsc functions and the fact that the intersection of maximal cyclically monotone graphs is the critical set of a bipotential.
@article{JCA_2010_17_1_JCA_2010_17_1_a6,
     author = {M. Buliga and G. de Saxc\'e and C. Vall\'ee},
     title = {Non {Maximal} {Cyclically} {Monotone} {Graphs} and {Construction} of a {Bipotential} for the {Coulomb's} {Dry} {Friction} {Law}},
     journal = {Journal of convex analysis},
     pages = {81--94},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a6/}
}
TY  - JOUR
AU  - M. Buliga
AU  - G. de Saxcé
AU  - C. Vallée
TI  - Non Maximal Cyclically Monotone Graphs and Construction of a Bipotential for the Coulomb's Dry Friction Law
JO  - Journal of convex analysis
PY  - 2010
SP  - 81
EP  - 94
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a6/
ID  - JCA_2010_17_1_JCA_2010_17_1_a6
ER  - 
%0 Journal Article
%A M. Buliga
%A G. de Saxcé
%A C. Vallée
%T Non Maximal Cyclically Monotone Graphs and Construction of a Bipotential for the Coulomb's Dry Friction Law
%J Journal of convex analysis
%D 2010
%P 81-94
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a6/
%F JCA_2010_17_1_JCA_2010_17_1_a6
M. Buliga; G. de Saxcé; C. Vallée. Non Maximal Cyclically Monotone Graphs and Construction of a Bipotential for the Coulomb's Dry Friction Law. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a6/