Quasiconvexity and Uniqueness of Stationary Points on a Space of Measure Preserving Maps
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 69-79
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $\Omega \subset {\mathbb R}^n$ be a bounded starshaped domain and consider the energy functional \begin{equation*} {\mathbb F}[u; \Omega] := \int_\Omega {\bf F}(\nabla u(x)) \, dx, \end{equation*} over the space of measure preserving maps \begin{equation*} {\mathcal A}_p(\Omega)=\bigg\{u \in \bar \xi x + W_0^{1,p}(\Omega, {\mathbb R}^n) : \det \nabla u = 1 \mbox{ $a.e.$ in $\Omega$} \bigg\}, \end{equation*} with $p \in [1, \infty[$, $\bar \xi \in {\mathbb M}_{n \times n}$ and $\det \bar \xi =1$. In this short note we address the question of {\it uniqueness} for solutions of the corresponding system of Euler-Lagrange equations. In particular we give a new proof of the celebrated result of R. J. Knops and C. A. Stuart [Arch. Rational Mech. Anal. 86, No. 3 (1984) 233--249] using a method based on {\it comparison} with homogeneous degree-one extensions as introduced by the second author in his recent paper "Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations" [Proc. Amer. Math. Soc. 131, (2003) 3101--3107].
@article{JCA_2010_17_1_JCA_2010_17_1_a5,
author = {M. S. Shahrokhi-Dehkordi and A. Taheri},
title = {Quasiconvexity and {Uniqueness} of {Stationary} {Points} on a {Space} of {Measure} {Preserving} {Maps}},
journal = {Journal of convex analysis},
pages = {69--79},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a5/}
}
TY - JOUR AU - M. S. Shahrokhi-Dehkordi AU - A. Taheri TI - Quasiconvexity and Uniqueness of Stationary Points on a Space of Measure Preserving Maps JO - Journal of convex analysis PY - 2010 SP - 69 EP - 79 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a5/ ID - JCA_2010_17_1_JCA_2010_17_1_a5 ER -
%0 Journal Article %A M. S. Shahrokhi-Dehkordi %A A. Taheri %T Quasiconvexity and Uniqueness of Stationary Points on a Space of Measure Preserving Maps %J Journal of convex analysis %D 2010 %P 69-79 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a5/ %F JCA_2010_17_1_JCA_2010_17_1_a5
M. S. Shahrokhi-Dehkordi; A. Taheri. Quasiconvexity and Uniqueness of Stationary Points on a Space of Measure Preserving Maps. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 69-79. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a5/