A Unified Construction Yielding Precisely Hilbert and James Sequences Spaces
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 349-356
Cet article a éte moissonné depuis la source Heldermann Verlag
Following R. C. James' approach, we shall define the Banach space $J(e)$ for each vector $e=(e_1,e_2,...,e_d) \in \Bbb{R}^d$ with $ e_1 \ne 0$. The construction immediately implies that $J(1)$ coincides with the Hilbert space $l_2$ and that $J(1;-1)$ coincides with the celebrated quasireflexive James space $J$. The results of this paper show that, up to an isomorphism, there are only these two possibilities: (i) $J(e)$ is isomorphic to $l_2$ if $e_1+e_2+...+e_d\ne 0$, and (ii) $J(e)$ is isomorphic to $J$ if $e_1+e_2+...+e_d =0$. Such a dichotomy also holds for every separable Orlicz sequence space $l_M$.
Classification :
54C60, 54C65, 41A65, 54C55, 54C20
Mots-clés : Hilbert space, Banach space, James sequence space, quasireflexive space, invertible continuous operator, Orlicz function
Mots-clés : Hilbert space, Banach space, James sequence space, quasireflexive space, invertible continuous operator, Orlicz function
@article{JCA_2010_17_1_JCA_2010_17_1_a24,
author = {D. Repovs and P. V. Semenov},
title = {A {Unified} {Construction} {Yielding} {Precisely} {Hilbert} and {James} {Sequences} {Spaces}},
journal = {Journal of convex analysis},
pages = {349--356},
year = {2010},
volume = {17},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a24/}
}
TY - JOUR AU - D. Repovs AU - P. V. Semenov TI - A Unified Construction Yielding Precisely Hilbert and James Sequences Spaces JO - Journal of convex analysis PY - 2010 SP - 349 EP - 356 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a24/ ID - JCA_2010_17_1_JCA_2010_17_1_a24 ER -
D. Repovs; P. V. Semenov. A Unified Construction Yielding Precisely Hilbert and James Sequences Spaces. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 349-356. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a24/