Deville's Master Lemma and Stone's Discreteness in Renorming Theory
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 959-972
Voir la notice de l'article provenant de la source Heldermann Verlag
Banach spaces $X$ with an equivalent $\sigma(X,F)$-lower semicontinuous and locally uniformly rotund norm, for a norming subspace $F\subset X^*$, are those spaces $X$ that admit countably many families of convex and $\sigma(X,F)$-lower semicontinuous functions $\{\varphi_i^n:X \rightarrow {\mathbb R}^+ ; i \in I_n\}_{n=1}^\infty$ such that there are open subsets $$G_i^n \subset \{\varphi_i^n >0\} \cap\{\varphi_j^n =0: j\neq i, j \in I_n\}$$ with $\{G_i^n: i\in I_n, n\in {\mathbb N}\}$ a basis for the norm topology of $X$.
Classification :
46B03, 46B20, 46B26, 54E35
Mots-clés : Banach space, local uniform rotundity, slicely-isolatedness, network, convex biorthogonal system
Mots-clés : Banach space, local uniform rotundity, slicely-isolatedness, network, convex biorthogonal system
@article{JCA_2009_16_3_JCA_2009_16_3_a23,
author = {J. Orihuela and S. Troyanski},
title = {Deville's {Master} {Lemma} and {Stone's} {Discreteness} in {Renorming} {Theory}},
journal = {Journal of convex analysis},
pages = {959--972},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/}
}
TY - JOUR AU - J. Orihuela AU - S. Troyanski TI - Deville's Master Lemma and Stone's Discreteness in Renorming Theory JO - Journal of convex analysis PY - 2009 SP - 959 EP - 972 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/ ID - JCA_2009_16_3_JCA_2009_16_3_a23 ER -
J. Orihuela; S. Troyanski. Deville's Master Lemma and Stone's Discreteness in Renorming Theory. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 959-972. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/