Deville's Master Lemma and Stone's Discreteness in Renorming Theory
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 959-972.

Voir la notice de l'article provenant de la source Heldermann Verlag

Banach spaces $X$ with an equivalent $\sigma(X,F)$-lower semicontinuous and locally uniformly rotund norm, for a norming subspace $F\subset X^*$, are those spaces $X$ that admit countably many families of convex and $\sigma(X,F)$-lower semicontinuous functions $\{\varphi_i^n:X \rightarrow {\mathbb R}^+ ; i \in I_n\}_{n=1}^\infty$ such that there are open subsets $$G_i^n \subset \{\varphi_i^n >0\} \cap\{\varphi_j^n =0: j\neq i, j \in I_n\}$$ with $\{G_i^n: i\in I_n, n\in {\mathbb N}\}$ a basis for the norm topology of $X$.
Classification : 46B03, 46B20, 46B26, 54E35
Mots-clés : Banach space, local uniform rotundity, slicely-isolatedness, network, convex biorthogonal system
@article{JCA_2009_16_3_JCA_2009_16_3_a23,
     author = {J. Orihuela and S. Troyanski},
     title = {Deville's {Master} {Lemma} and {Stone's} {Discreteness} in {Renorming} {Theory}},
     journal = {Journal of convex analysis},
     pages = {959--972},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/}
}
TY  - JOUR
AU  - J. Orihuela
AU  - S. Troyanski
TI  - Deville's Master Lemma and Stone's Discreteness in Renorming Theory
JO  - Journal of convex analysis
PY  - 2009
SP  - 959
EP  - 972
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/
ID  - JCA_2009_16_3_JCA_2009_16_3_a23
ER  - 
%0 Journal Article
%A J. Orihuela
%A S. Troyanski
%T Deville's Master Lemma and Stone's Discreteness in Renorming Theory
%J Journal of convex analysis
%D 2009
%P 959-972
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/
%F JCA_2009_16_3_JCA_2009_16_3_a23
J. Orihuela; S. Troyanski. Deville's Master Lemma and Stone's Discreteness in Renorming Theory. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 959-972. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a23/