A New Old Class of Maximal Monotone Operators
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 881-89
Voir la notice de l'article provenant de la source Heldermann Verlag
In a recent paper ["Brøndsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces", J. Convex Analysis 15(4) (2008) 693--706] the authors studied a class of maximal monotone operators, characterized by the existence of a function in Fitzpatrick's family of the operator which conjugate is above the duality product. This property was used to prove that such operators satisfies a strict version of the Brøndsted-Rockafellar property.
Classification :
47H05, 49J52, 47N10
Mots-clés : Maximal monotone operators, Broendsted-Rockafellar property, non-reflexive Banach spaces, Fitzpatrick functions
Mots-clés : Maximal monotone operators, Broendsted-Rockafellar property, non-reflexive Banach spaces, Fitzpatrick functions
@article{JCA_2009_16_3_JCA_2009_16_3_a18,
author = {M. Marques Alves and B. F. Svaiter},
title = {A {New} {Old} {Class} of {Maximal} {Monotone} {Operators}},
journal = {Journal of convex analysis},
pages = {881--89},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a18/}
}
TY - JOUR AU - M. Marques Alves AU - B. F. Svaiter TI - A New Old Class of Maximal Monotone Operators JO - Journal of convex analysis PY - 2009 SP - 881 EP - 89 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a18/ ID - JCA_2009_16_3_JCA_2009_16_3_a18 ER -
M. Marques Alves; B. F. Svaiter. A New Old Class of Maximal Monotone Operators. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 881-89. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a18/