Random Products of Quasi-Nonexpansive Mappings in Hilbert Space
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 633-64
Cet article a éte moissonné depuis la source Heldermann Verlag
An algorithmic framework based on either random (unrestricted) or quasi-cyclic products for finding a point in the intersection of the fixed point sets of a finite collection of quasi-nonexpansive mappings is considered and two convergence theorems are established.
Classification :
47H09, 47H10, 49M20
Mots-clés : Common fixed point, infinite product, quasi-nonexpansive mapping, relaxation method
Mots-clés : Common fixed point, infinite product, quasi-nonexpansive mapping, relaxation method
@article{JCA_2009_16_3_JCA_2009_16_3_a1,
author = {A. Aleyner and S. Reich},
title = {Random {Products} of {Quasi-Nonexpansive} {Mappings} in {Hilbert} {Space}},
journal = {Journal of convex analysis},
pages = {633--64},
year = {2009},
volume = {16},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a1/}
}
A. Aleyner; S. Reich. Random Products of Quasi-Nonexpansive Mappings in Hilbert Space. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 633-64. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a1/