Random Products of Quasi-Nonexpansive Mappings in Hilbert Space
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 633-64.

Voir la notice de l'article provenant de la source Heldermann Verlag

An algorithmic framework based on either random (unrestricted) or quasi-cyclic products for finding a point in the intersection of the fixed point sets of a finite collection of quasi-nonexpansive mappings is considered and two convergence theorems are established.
Classification : 47H09, 47H10, 49M20
Mots-clés : Common fixed point, infinite product, quasi-nonexpansive mapping, relaxation method
@article{JCA_2009_16_3_JCA_2009_16_3_a1,
     author = {A. Aleyner and S. Reich},
     title = {Random {Products} of {Quasi-Nonexpansive} {Mappings} in {Hilbert} {Space}},
     journal = {Journal of convex analysis},
     pages = {633--64},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a1/}
}
TY  - JOUR
AU  - A. Aleyner
AU  - S. Reich
TI  - Random Products of Quasi-Nonexpansive Mappings in Hilbert Space
JO  - Journal of convex analysis
PY  - 2009
SP  - 633
EP  - 64
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a1/
ID  - JCA_2009_16_3_JCA_2009_16_3_a1
ER  - 
%0 Journal Article
%A A. Aleyner
%A S. Reich
%T Random Products of Quasi-Nonexpansive Mappings in Hilbert Space
%J Journal of convex analysis
%D 2009
%P 633-64
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a1/
%F JCA_2009_16_3_JCA_2009_16_3_a1
A. Aleyner; S. Reich. Random Products of Quasi-Nonexpansive Mappings in Hilbert Space. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 633-64. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a1/