Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 523-541
Voir la notice de l'article provenant de la source Heldermann Verlag
We study the boundary value problem $-div(a(x,\nabla u))=f(x,u)$ in $\Omega$, $u=0$ on $\partial \Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{N}$ and $div(a(x,\nabla u))$ is a $p(x)$-Laplace type operator. We obtain the existence and uniqueness of an entropy solution for $L^{1}$-data $f$ independent of $u$, the existence of weak energy solution for general data $f$ dependent of $u$ where the variable exponent $p(.)$ is not necessarily continuous.
Mots-clés :
Generalized Lebesgue-Sobolev spaces, weak energy solution, entropy solution, p(x)-Laplace operator, electrorheological fluids
@article{JCA_2009_16_2_JCA_2009_16_2_a12,
author = {S. Ouaro and S. Traore},
title = {Weak and {Entropy} {Solutions} to {Nonlinear} {Elliptic} {Problems} with {Variable} {Exponent}},
journal = {Journal of convex analysis},
pages = {523--541},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/}
}
TY - JOUR AU - S. Ouaro AU - S. Traore TI - Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent JO - Journal of convex analysis PY - 2009 SP - 523 EP - 541 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/ ID - JCA_2009_16_2_JCA_2009_16_2_a12 ER -
%0 Journal Article %A S. Ouaro %A S. Traore %T Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent %J Journal of convex analysis %D 2009 %P 523-541 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/ %F JCA_2009_16_2_JCA_2009_16_2_a12
S. Ouaro; S. Traore. Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 523-541. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/