Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 523-541.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the boundary value problem $-div(a(x,\nabla u))=f(x,u)$ in $\Omega$, $u=0$ on $\partial \Omega$, where $\Omega$ is a smooth bounded domain in $\mathbb{R}^{N}$ and $div(a(x,\nabla u))$ is a $p(x)$-Laplace type operator. We obtain the existence and uniqueness of an entropy solution for $L^{1}$-data $f$ independent of $u$, the existence of weak energy solution for general data $f$ dependent of $u$ where the variable exponent $p(.)$ is not necessarily continuous.
Mots-clés : Generalized Lebesgue-Sobolev spaces, weak energy solution, entropy solution, p(x)-Laplace operator, electrorheological fluids
@article{JCA_2009_16_2_JCA_2009_16_2_a12,
     author = {S. Ouaro and S. Traore},
     title = {Weak and {Entropy} {Solutions} to {Nonlinear} {Elliptic} {Problems} with {Variable} {Exponent}},
     journal = {Journal of convex analysis},
     pages = {523--541},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/}
}
TY  - JOUR
AU  - S. Ouaro
AU  - S. Traore
TI  - Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent
JO  - Journal of convex analysis
PY  - 2009
SP  - 523
EP  - 541
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/
ID  - JCA_2009_16_2_JCA_2009_16_2_a12
ER  - 
%0 Journal Article
%A S. Ouaro
%A S. Traore
%T Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent
%J Journal of convex analysis
%D 2009
%P 523-541
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/
%F JCA_2009_16_2_JCA_2009_16_2_a12
S. Ouaro; S. Traore. Weak and Entropy Solutions to Nonlinear Elliptic Problems with Variable Exponent. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 523-541. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a12/