Semiconvex Functions: Representations as Suprema of Smooth Functions and Extensions
Journal of convex analysis, Tome 16 (2009) no. 1, pp. 239-26.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove results on representations of semiconvex functions with an arbitrary modulus (equivalently: strongly paraconvex functions) in superreflexive Banach spaces as suprema of families of differentiable functions. Also, results on extensions of semiconvex functions are proved. Further, characterizations of semiconvex functions by uniform Fréchet subdifferentiability and (global) [α]-subdifferentiability are given. We also show that weakly convex functions in Nurminskii's sense coincide with locally semiconvex functions.
Classification : 26B25, 46T99
Mots-clés : Semiconvex function, strongly paraconvex function, generalized subdifferentials, suprema of smooth functions
@article{JCA_2009_16_1_JCA_2009_16_1_a12,
     author = {J. Duda and L. Zaj{\'\i}cek},
     title = {Semiconvex {Functions:} {Representations} as {Suprema} of {Smooth} {Functions} and {Extensions}},
     journal = {Journal of convex analysis},
     pages = {239--26},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a12/}
}
TY  - JOUR
AU  - J. Duda
AU  - L. Zajícek
TI  - Semiconvex Functions: Representations as Suprema of Smooth Functions and Extensions
JO  - Journal of convex analysis
PY  - 2009
SP  - 239
EP  - 26
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a12/
ID  - JCA_2009_16_1_JCA_2009_16_1_a12
ER  - 
%0 Journal Article
%A J. Duda
%A L. Zajícek
%T Semiconvex Functions: Representations as Suprema of Smooth Functions and Extensions
%J Journal of convex analysis
%D 2009
%P 239-26
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a12/
%F JCA_2009_16_1_JCA_2009_16_1_a12
J. Duda; L. Zajícek. Semiconvex Functions: Representations as Suprema of Smooth Functions and Extensions. Journal of convex analysis, Tome 16 (2009) no. 1, pp. 239-26. http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a12/