Lusin Type Theorem with Convex Integration and Quasiconvex Hulls of Sets
Journal of convex analysis, Tome 16 (2009) no. 1, pp. 227-237.

Voir la notice de l'article provenant de la source Heldermann Verlag

We obtain Lusin type theorem showing that after extracting an open set of an arbitrary small measure one can apply the variant of convex integration theory dealing with quasiconvex hulls of sets. The result is applied to the existence theory of approximate solutions of the PDI: Du belongs to K.
Classification : 49J45, 49J24, 35F30
Mots-clés : Nonconvex variational problems, differential inclusions, quasiconvexity
@article{JCA_2009_16_1_JCA_2009_16_1_a11,
     author = {A. Kalamajska},
     title = {Lusin {Type} {Theorem} with {Convex} {Integration} and {Quasiconvex} {Hulls} of {Sets}},
     journal = {Journal of convex analysis},
     pages = {227--237},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a11/}
}
TY  - JOUR
AU  - A. Kalamajska
TI  - Lusin Type Theorem with Convex Integration and Quasiconvex Hulls of Sets
JO  - Journal of convex analysis
PY  - 2009
SP  - 227
EP  - 237
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a11/
ID  - JCA_2009_16_1_JCA_2009_16_1_a11
ER  - 
%0 Journal Article
%A A. Kalamajska
%T Lusin Type Theorem with Convex Integration and Quasiconvex Hulls of Sets
%J Journal of convex analysis
%D 2009
%P 227-237
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a11/
%F JCA_2009_16_1_JCA_2009_16_1_a11
A. Kalamajska. Lusin Type Theorem with Convex Integration and Quasiconvex Hulls of Sets. Journal of convex analysis, Tome 16 (2009) no. 1, pp. 227-237. http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a11/