On Semicontinuity of Convex-Valued Multifunctions and Cesari's Property (Q)
Journal of convex analysis, Tome 15 (2008) no. 4, pp. 803-818
Voir la notice de l'article provenant de la source Heldermann Verlag
\newcommand{\R}{\mathbb{R}} We investigate two types of semicontinuity for set-valued maps, Painlev\'{e}-Kuratowski semicontinuity and Cesari's property (Q). It is shown that, in the context of convex-valued maps, the concepts related to Cesari's property (Q) have better properties than the concepts in the sense of Painlev\'{e}-Kuratowski. In particular we give a characterization of Cesari's property (Q) in terms of upper semicontinuity of a family of scalar functions $\sigma_{f(\,\cdot\,)}(y^*) \colon X \to \overline\R$, where $\sigma_{f(x)} \colon Y^*\to \overline\R$ is the support function of the set $f(x)$. We compare both types of semicontinuity and show their coincidence in special cases.
Classification :
47H04,58C07
Mots-clés : Semi-continuity, set-valued maps, property (Q)
Mots-clés : Semi-continuity, set-valued maps, property (Q)
@article{JCA_2008_15_4_JCA_2008_15_4_a7,
author = {A. L\"ohne},
title = {On {Semicontinuity} of {Convex-Valued} {Multifunctions} and {Cesari's} {Property} {(Q)}},
journal = {Journal of convex analysis},
pages = {803--818},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a7/}
}
TY - JOUR AU - A. Löhne TI - On Semicontinuity of Convex-Valued Multifunctions and Cesari's Property (Q) JO - Journal of convex analysis PY - 2008 SP - 803 EP - 818 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a7/ ID - JCA_2008_15_4_JCA_2008_15_4_a7 ER -
A. Löhne. On Semicontinuity of Convex-Valued Multifunctions and Cesari's Property (Q). Journal of convex analysis, Tome 15 (2008) no. 4, pp. 803-818. http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a7/