A Turnpike Result for a Class of Problems of the Calculus of Variations with Extended-Valued Integrands
Journal of convex analysis, Tome 15 (2008) no. 4, pp. 869-89.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the structure of approximate solutions of an autonomous variational problem with a lower semicontinuous integrand $$f:R^n\times R^n \to R^1\cup \{\infty\},$$ where $R^n$ is the $n$-dimensional Euclidean space. We are interested in a turnpike property of the approximate solutions which are independent of the length of the interval, for all sufficiently large intervals.
Classification : 49J99
Mots-clés : Good function, infinite horizon, overtaking optimal function, turnpike property
@article{JCA_2008_15_4_JCA_2008_15_4_a11,
     author = {A. J. Zaslavski},
     title = {A {Turnpike} {Result} for a {Class} of {Problems} of the {Calculus} of {Variations} with {Extended-Valued} {Integrands}},
     journal = {Journal of convex analysis},
     pages = {869--89},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a11/}
}
TY  - JOUR
AU  - A. J. Zaslavski
TI  - A Turnpike Result for a Class of Problems of the Calculus of Variations with Extended-Valued Integrands
JO  - Journal of convex analysis
PY  - 2008
SP  - 869
EP  - 89
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a11/
ID  - JCA_2008_15_4_JCA_2008_15_4_a11
ER  - 
%0 Journal Article
%A A. J. Zaslavski
%T A Turnpike Result for a Class of Problems of the Calculus of Variations with Extended-Valued Integrands
%J Journal of convex analysis
%D 2008
%P 869-89
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a11/
%F JCA_2008_15_4_JCA_2008_15_4_a11
A. J. Zaslavski. A Turnpike Result for a Class of Problems of the Calculus of Variations with Extended-Valued Integrands. Journal of convex analysis, Tome 15 (2008) no. 4, pp. 869-89. http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a11/