Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent
Journal of convex analysis, Tome 15 (2008) no. 4, pp. 655-676.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a Γ-convergence result for vector-valued nonlinear energies defined on periodically perforated domains. We consider integrands with p-growth for p converging to the space dimension n. We prove that for p close to the critical exponent n there are three regimes, two with a non-trivial size of the perforations (exponential and mixed polynomial-exponential) and one where the Γ-limit is always trivial.
Mots-clés : Gamma-convergence, perforated domains, critical exponent
@article{JCA_2008_15_4_JCA_2008_15_4_a0,
     author = {L. Sigalotti},
     title = {Asymptotic {Analysis} of {Periodically} {Perforated} {Nonlinear} {Media} {Close} to the {Critical} {Exponent}},
     journal = {Journal of convex analysis},
     pages = {655--676},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/}
}
TY  - JOUR
AU  - L. Sigalotti
TI  - Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent
JO  - Journal of convex analysis
PY  - 2008
SP  - 655
EP  - 676
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/
ID  - JCA_2008_15_4_JCA_2008_15_4_a0
ER  - 
%0 Journal Article
%A L. Sigalotti
%T Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent
%J Journal of convex analysis
%D 2008
%P 655-676
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/
%F JCA_2008_15_4_JCA_2008_15_4_a0
L. Sigalotti. Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent. Journal of convex analysis, Tome 15 (2008) no. 4, pp. 655-676. http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/