Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent
Journal of convex analysis, Tome 15 (2008) no. 4, pp. 655-676
Voir la notice de l'article provenant de la source Heldermann Verlag
We give a Γ-convergence result for vector-valued nonlinear energies defined on periodically perforated domains. We consider integrands with p-growth for p converging to the space dimension n. We prove that for p close to the critical exponent n there are three regimes, two with a non-trivial size of the perforations (exponential and mixed polynomial-exponential) and one where the Γ-limit is always trivial.
Mots-clés :
Gamma-convergence, perforated domains, critical exponent
@article{JCA_2008_15_4_JCA_2008_15_4_a0,
author = {L. Sigalotti},
title = {Asymptotic {Analysis} of {Periodically} {Perforated} {Nonlinear} {Media} {Close} to the {Critical} {Exponent}},
journal = {Journal of convex analysis},
pages = {655--676},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/}
}
TY - JOUR AU - L. Sigalotti TI - Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent JO - Journal of convex analysis PY - 2008 SP - 655 EP - 676 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/ ID - JCA_2008_15_4_JCA_2008_15_4_a0 ER -
%0 Journal Article %A L. Sigalotti %T Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent %J Journal of convex analysis %D 2008 %P 655-676 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/ %F JCA_2008_15_4_JCA_2008_15_4_a0
L. Sigalotti. Asymptotic Analysis of Periodically Perforated Nonlinear Media Close to the Critical Exponent. Journal of convex analysis, Tome 15 (2008) no. 4, pp. 655-676. http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a0/