Representation of the Polar Cone of Convex Functions and Applications
Journal of convex analysis, Tome 15 (2008) no. 3, pp. 535-546
Voir la notice de l'article provenant de la source Heldermann Verlag
Using a result of Y. Brenier [Comm. Pure Appl. Math. 44 (1991) 375--417] we give a representation of the polar cone of monotone gradient fields in terms of measure-preserving maps, or bistochastic measures. Some applications to variational problems subject to a convexity constraint are given.
Mots-clés :
Convexity constraint, Euler-Lagrange equation, measure-preserving maps, bistochastic measures
@article{JCA_2008_15_3_JCA_2008_15_3_a6,
author = {G. Carlier and T. Lachand-Robert},
title = {Representation of the {Polar} {Cone} of {Convex} {Functions} and {Applications}},
journal = {Journal of convex analysis},
pages = {535--546},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_3_JCA_2008_15_3_a6/}
}
TY - JOUR AU - G. Carlier AU - T. Lachand-Robert TI - Representation of the Polar Cone of Convex Functions and Applications JO - Journal of convex analysis PY - 2008 SP - 535 EP - 546 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2008_15_3_JCA_2008_15_3_a6/ ID - JCA_2008_15_3_JCA_2008_15_3_a6 ER -
G. Carlier; T. Lachand-Robert. Representation of the Polar Cone of Convex Functions and Applications. Journal of convex analysis, Tome 15 (2008) no. 3, pp. 535-546. http://geodesic.mathdoc.fr/item/JCA_2008_15_3_JCA_2008_15_3_a6/