Pseudometrizable Bornological Convergence is Attouch-Wets Convergence
Journal of convex analysis, Tome 15 (2008) no. 2, pp. 439-453.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $\mathcal{S}$ be an ideal of subsets of a metric space $\langle X,d \rangle$. A net of subsets $\langle A_\lambda\rangle$ of $X$ is called $\mathcal{S}$\textit{-convergent} to a subset $A$ of $X$ if for each $S \in \mathcal{S}$ and each $\varepsilon > 0$, we have eventually $A \cap S \subseteq A^\varepsilon_\lambda \ \textrm{and} \ A_\lambda \cap S \subseteq A^\varepsilon.$ We identify necessary and sufficient conditions for this convergence to be admissible and topological on the power set of $X$. We show that $\mathcal{S}$-convergence is compatible with a pseudometrizable topology if and only if $\mathcal{S}$ has a countable base and each member of $\mathcal{S}$ has an $\varepsilon$-enlargement that is again in $\mathcal{S}$. Further, in the case that the ideal is a bornology, we show that $\mathcal{S}$-convergence when pseudometrizable is Attouch-Wets convergence with respect to an equivalent metric.
Classification : 54B20, 46A17, 54E35
Mots-clés : Bornological convergence, Attouch-Wets convergence, bounded Hausdorff convergence, hyperspace, bornology
@article{JCA_2008_15_2_JCA_2008_15_2_a17,
     author = {G. Beer and S. Levi},
     title = {Pseudometrizable {Bornological} {Convergence} is {Attouch-Wets} {Convergence}},
     journal = {Journal of convex analysis},
     pages = {439--453},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/}
}
TY  - JOUR
AU  - G. Beer
AU  - S. Levi
TI  - Pseudometrizable Bornological Convergence is Attouch-Wets Convergence
JO  - Journal of convex analysis
PY  - 2008
SP  - 439
EP  - 453
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/
ID  - JCA_2008_15_2_JCA_2008_15_2_a17
ER  - 
%0 Journal Article
%A G. Beer
%A S. Levi
%T Pseudometrizable Bornological Convergence is Attouch-Wets Convergence
%J Journal of convex analysis
%D 2008
%P 439-453
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/
%F JCA_2008_15_2_JCA_2008_15_2_a17
G. Beer; S. Levi. Pseudometrizable Bornological Convergence is Attouch-Wets Convergence. Journal of convex analysis, Tome 15 (2008) no. 2, pp. 439-453. http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/