Pseudometrizable Bornological Convergence is Attouch-Wets Convergence
Journal of convex analysis, Tome 15 (2008) no. 2, pp. 439-453
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $\mathcal{S}$ be an ideal of subsets of a metric space $\langle X,d \rangle$. A net of subsets $\langle A_\lambda\rangle$ of $X$ is called $\mathcal{S}$\textit{-convergent} to a subset $A$ of $X$ if for each $S \in \mathcal{S}$ and each $\varepsilon > 0$, we have eventually $A \cap S \subseteq A^\varepsilon_\lambda \ \textrm{and} \ A_\lambda \cap S \subseteq A^\varepsilon.$ We identify necessary and sufficient conditions for this convergence to be admissible and topological on the power set of $X$. We show that $\mathcal{S}$-convergence is compatible with a pseudometrizable topology if and only if $\mathcal{S}$ has a countable base and each member of $\mathcal{S}$ has an $\varepsilon$-enlargement that is again in $\mathcal{S}$. Further, in the case that the ideal is a bornology, we show that $\mathcal{S}$-convergence when pseudometrizable is Attouch-Wets convergence with respect to an equivalent metric.
Classification :
54B20, 46A17, 54E35
Mots-clés : Bornological convergence, Attouch-Wets convergence, bounded Hausdorff convergence, hyperspace, bornology
Mots-clés : Bornological convergence, Attouch-Wets convergence, bounded Hausdorff convergence, hyperspace, bornology
@article{JCA_2008_15_2_JCA_2008_15_2_a17,
author = {G. Beer and S. Levi},
title = {Pseudometrizable {Bornological} {Convergence} is {Attouch-Wets} {Convergence}},
journal = {Journal of convex analysis},
pages = {439--453},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/}
}
TY - JOUR AU - G. Beer AU - S. Levi TI - Pseudometrizable Bornological Convergence is Attouch-Wets Convergence JO - Journal of convex analysis PY - 2008 SP - 439 EP - 453 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/ ID - JCA_2008_15_2_JCA_2008_15_2_a17 ER -
G. Beer; S. Levi. Pseudometrizable Bornological Convergence is Attouch-Wets Convergence. Journal of convex analysis, Tome 15 (2008) no. 2, pp. 439-453. http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a17/