Calculus Rules for Maximal Monotone Operators in General Banach Spaces
Journal of convex analysis, Tome 15 (2008) no. 1, pp. 73-85.

Voir la notice de l'article provenant de la source Heldermann Verlag

The goal of this article is to provide characterizations of monotonicity and maximality via new properties of the Fitzpatrick function associated with a multi-valued operator. Several calculus rules for maximal monotone operators in non-reflexive Banach space settings are presented. In particular positive answers to Rockafellar's conjecture on the maximality of the sum and the chain rule in the linear case are given.
Classification : 47H05
Mots-clés : Maximal monotone operator; Sum and chain rules
@article{JCA_2008_15_1_JCA_2008_15_1_a5,
     author = {M. D. Voisei},
     title = {Calculus {Rules} for {Maximal} {Monotone} {Operators} in {General} {Banach} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {73--85},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a5/}
}
TY  - JOUR
AU  - M. D. Voisei
TI  - Calculus Rules for Maximal Monotone Operators in General Banach Spaces
JO  - Journal of convex analysis
PY  - 2008
SP  - 73
EP  - 85
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a5/
ID  - JCA_2008_15_1_JCA_2008_15_1_a5
ER  - 
%0 Journal Article
%A M. D. Voisei
%T Calculus Rules for Maximal Monotone Operators in General Banach Spaces
%J Journal of convex analysis
%D 2008
%P 73-85
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a5/
%F JCA_2008_15_1_JCA_2008_15_1_a5
M. D. Voisei. Calculus Rules for Maximal Monotone Operators in General Banach Spaces. Journal of convex analysis, Tome 15 (2008) no. 1, pp. 73-85. http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a5/