Calculus Rules for Maximal Monotone Operators in General Banach Spaces
Journal of convex analysis, Tome 15 (2008) no. 1, pp. 73-85
Cet article a éte moissonné depuis la source Heldermann Verlag
The goal of this article is to provide characterizations of monotonicity and maximality via new properties of the Fitzpatrick function associated with a multi-valued operator. Several calculus rules for maximal monotone operators in non-reflexive Banach space settings are presented. In particular positive answers to Rockafellar's conjecture on the maximality of the sum and the chain rule in the linear case are given.
Classification :
47H05
Mots-clés : Maximal monotone operator; Sum and chain rules
Mots-clés : Maximal monotone operator; Sum and chain rules
@article{JCA_2008_15_1_JCA_2008_15_1_a5,
author = {M. D. Voisei},
title = {Calculus {Rules} for {Maximal} {Monotone} {Operators} in {General} {Banach} {Spaces}},
journal = {Journal of convex analysis},
pages = {73--85},
year = {2008},
volume = {15},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a5/}
}
M. D. Voisei. Calculus Rules for Maximal Monotone Operators in General Banach Spaces. Journal of convex analysis, Tome 15 (2008) no. 1, pp. 73-85. http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a5/