A Lower Semicontinuity Result in SBD
Journal of convex analysis, Tome 15 (2008) no. 1, pp. 191-2
Voir la notice de l'article provenant de la source Heldermann Verlag
A lower semicontinuity result is proved in the space of special functions of bounded deformation for a fracture energetic model according to Barenblatt's theory, i.e. $$\int_{J_{u}} \varphi([u] \cdot \nu_{u})d {\cal H}^{N-1} \enspace, \enspace [u]\cdot \nu_u \geq 0 \enspace {\cal H}^{N-1} - \hbox{ a.e. on }J_u.$$
Classification :
49J45, 26B25, 26B30, 26D10, 39B62, 74A45, 74B20, 74R99
Mots-clés : Lower semicontinuity, fracture, special functions of bounded deformation, convexity, subadditivity
Mots-clés : Lower semicontinuity, fracture, special functions of bounded deformation, convexity, subadditivity
@article{JCA_2008_15_1_JCA_2008_15_1_a12,
author = {G. Gargiulo and E. Zappale},
title = {A {Lower} {Semicontinuity} {Result} in {SBD}},
journal = {Journal of convex analysis},
pages = {191--2},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a12/}
}
G. Gargiulo; E. Zappale. A Lower Semicontinuity Result in SBD. Journal of convex analysis, Tome 15 (2008) no. 1, pp. 191-2. http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a12/