Uniqueness and Continuous Dependence on Boundary Data for Integro-Extremal Minimizers of the Functional of the Gradient
Journal of convex analysis, Tome 14 (2007) no. 4, pp. 705-727
Voir la notice de l'article provenant de la source Heldermann Verlag
We study some qualitative properties of the integro-extremal minimizers of the functional of the gradient defined on Sobolev spaces with Dirichlet boundary conditions. We discuss their use in the non-convex case via viscosity methods and give conditions under which they are unique and depend continuously on boundary data.
@article{JCA_2007_14_4_JCA_2007_14_4_a2,
author = {S. Zagatti},
title = {Uniqueness and {Continuous} {Dependence} on {Boundary} {Data} for {Integro-Extremal} {Minimizers} of the {Functional} of the {Gradient}},
journal = {Journal of convex analysis},
pages = {705--727},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_4_JCA_2007_14_4_a2/}
}
TY - JOUR AU - S. Zagatti TI - Uniqueness and Continuous Dependence on Boundary Data for Integro-Extremal Minimizers of the Functional of the Gradient JO - Journal of convex analysis PY - 2007 SP - 705 EP - 727 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2007_14_4_JCA_2007_14_4_a2/ ID - JCA_2007_14_4_JCA_2007_14_4_a2 ER -
%0 Journal Article %A S. Zagatti %T Uniqueness and Continuous Dependence on Boundary Data for Integro-Extremal Minimizers of the Functional of the Gradient %J Journal of convex analysis %D 2007 %P 705-727 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2007_14_4_JCA_2007_14_4_a2/ %F JCA_2007_14_4_JCA_2007_14_4_a2
S. Zagatti. Uniqueness and Continuous Dependence on Boundary Data for Integro-Extremal Minimizers of the Functional of the Gradient. Journal of convex analysis, Tome 14 (2007) no. 4, pp. 705-727. http://geodesic.mathdoc.fr/item/JCA_2007_14_4_JCA_2007_14_4_a2/