Zeros of the Polyconvex Hull of Powers of the Distance and s-Polyconvexity
Journal of convex analysis, Tome 14 (2007) no. 2, pp. 319-344
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\dist{\mathop{\rm dist}\nolimits} \def\P{{\mathsf P}} Let $\dist_K$ be the distance from a compact set $K\subset\mathbb{M}^{m\times n}$ in the space of $m\times n$ matrices. This note determines the set $M_p\subset \mathbb{M}^{m\times n}$ of zeros of the polyconvex hull of $\dist_K^p$ where $1\leq p\infty$. It is shown that the set-valued map $p\mapsto M_p$ is constant on the intervals $[1,2),\dots,[q-1,q),[q,\infty)$ where $q:=\min\{ m, n\}$, while at $p=1,\dots,q$ the set $M_p$ generally jumps down discontinuously. The values $M_s$, $s= 1,\dots,q$, at the beginnings of intervals of constancy are characterized as $s$-polyconvex hulls $\P^sK$ of $K$ to be defined below, where $\P^1K$ is the convex hull and $\P^qK$ the standard polyconvex hull. As an illustration, $\P^sSO(n)$ are evaluated for all $s$ if $1\leq n\leq 4$, and for $n$ arbitrary if $n\geq s>n/2$ and/or $s=1$. In the remaining cases only bounds are obtained.
Classification :
49J45, 74B20
Mots-clés : Semiconvexity, polyconvexity, polyconvex hulls, rotational invariance
Mots-clés : Semiconvexity, polyconvexity, polyconvex hulls, rotational invariance
@article{JCA_2007_14_2_JCA_2007_14_2_a6,
author = {M. Silhavy},
title = {Zeros of the {Polyconvex} {Hull} of {Powers} of the {Distance} and {s-Polyconvexity}},
journal = {Journal of convex analysis},
pages = {319--344},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a6/}
}
TY - JOUR AU - M. Silhavy TI - Zeros of the Polyconvex Hull of Powers of the Distance and s-Polyconvexity JO - Journal of convex analysis PY - 2007 SP - 319 EP - 344 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a6/ ID - JCA_2007_14_2_JCA_2007_14_2_a6 ER -
M. Silhavy. Zeros of the Polyconvex Hull of Powers of the Distance and s-Polyconvexity. Journal of convex analysis, Tome 14 (2007) no. 2, pp. 319-344. http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a6/