Minmax via Differential Inclusion
Journal of convex analysis, Tome 14 (2007) no. 2, pp. 271-273.

Voir la notice de l'article provenant de la source Heldermann Verlag

The asymptotic behavior of the solution of a differential inclusion provides a simple proof of a minmax theorem.
@article{JCA_2007_14_2_JCA_2007_14_2_a3,
     author = {E. Lehrer and S. Sorin},
     title = {Minmax via {Differential} {Inclusion}},
     journal = {Journal of convex analysis},
     pages = {271--273},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a3/}
}
TY  - JOUR
AU  - E. Lehrer
AU  - S. Sorin
TI  - Minmax via Differential Inclusion
JO  - Journal of convex analysis
PY  - 2007
SP  - 271
EP  - 273
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a3/
ID  - JCA_2007_14_2_JCA_2007_14_2_a3
ER  - 
%0 Journal Article
%A E. Lehrer
%A S. Sorin
%T Minmax via Differential Inclusion
%J Journal of convex analysis
%D 2007
%P 271-273
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a3/
%F JCA_2007_14_2_JCA_2007_14_2_a3
E. Lehrer; S. Sorin. Minmax via Differential Inclusion. Journal of convex analysis, Tome 14 (2007) no. 2, pp. 271-273. http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a3/