High Order Smoothness and Asymptotic Structure in Banach Spaces
Journal of convex analysis, Tome 14 (2007) no. 2, pp. 249-269
Voir la notice de l'article provenant de la source Heldermann Verlag
We study the connections between moduli of asymptotic convexity and smoothness of a Banach space, and the existence of high order differentiable bump functions or equivalent norms on the space. The existence of a high order uniformly differentiable bump function is related to an asymptotically uniformly smooth renorming of power type. On the other hand, the asymptotic uniform convexity of power type is related to the existence of high order rough norms. Finally, we also obtain some applications to the best order smoothness of Nakano sequence spaces.
@article{JCA_2007_14_2_JCA_2007_14_2_a2,
author = {R. Gonzalo and J. A. Jaramillo and S. L. Troyanski},
title = {High {Order} {Smoothness} and {Asymptotic} {Structure} in {Banach} {Spaces}},
journal = {Journal of convex analysis},
pages = {249--269},
publisher = {mathdoc},
volume = {14},
number = {2},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a2/}
}
TY - JOUR AU - R. Gonzalo AU - J. A. Jaramillo AU - S. L. Troyanski TI - High Order Smoothness and Asymptotic Structure in Banach Spaces JO - Journal of convex analysis PY - 2007 SP - 249 EP - 269 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a2/ ID - JCA_2007_14_2_JCA_2007_14_2_a2 ER -
%0 Journal Article %A R. Gonzalo %A J. A. Jaramillo %A S. L. Troyanski %T High Order Smoothness and Asymptotic Structure in Banach Spaces %J Journal of convex analysis %D 2007 %P 249-269 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a2/ %F JCA_2007_14_2_JCA_2007_14_2_a2
R. Gonzalo; J. A. Jaramillo; S. L. Troyanski. High Order Smoothness and Asymptotic Structure in Banach Spaces. Journal of convex analysis, Tome 14 (2007) no. 2, pp. 249-269. http://geodesic.mathdoc.fr/item/JCA_2007_14_2_JCA_2007_14_2_a2/