Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere
Journal of convex analysis, Tome 14 (2007) no. 1, pp. 69-98.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the relaxation with respect to the $L^1$ norm of integral functionals of the type $$ F(u)=\int_\Omega f(x,u,\nabla u)\,dx\ ,\quad u\in W^{1,1}(\Omega;S^{d-1}) $$ where $\Omega$ is a bounded open set of $ R^N$, $S^{d-1}$ denotes the unite sphere in $ R^d$, $N$ and $d$ being any positive integers, and $f$ satisfies linear growth conditions in the gradient variable. In analogy with the unconstrained case, we show that, if, in addition, $f$ is quasiconvex in the gradient variable and satisfies some technical continuity hypotheses, then the relaxed functional $\overline F$ has an integral representation on $BV(\Omega;S^{d-1})$ of the type $$ \bar F(u)=\int_{\Omega}f(x,u,\nabla u)\,dx+\int_{S(u)}K(x,u^-,u^+,\nu_u)\,d{\cal H}^{N-1} + \int_\Omega f^\infty (x,u,d C(u)), $$ where the suface energy density $K$ is defined by a suitable Dirichlet-type problem.
Classification : 49J45,74Q99
Mots-clés : Relaxation, unit sphere, BV-functions
@article{JCA_2007_14_1_JCA_2007_14_1_a5,
     author = {R. Alicandro and A. Corbo Esposito and C. Leone},
     title = {Relaxation in {BV} of {Integral} {Functionals} {Defined} on {Sobolev} {Functions} with {Values} in the {Unit} {Sphere}},
     journal = {Journal of convex analysis},
     pages = {69--98},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/}
}
TY  - JOUR
AU  - R. Alicandro
AU  - A. Corbo Esposito
AU  - C. Leone
TI  - Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere
JO  - Journal of convex analysis
PY  - 2007
SP  - 69
EP  - 98
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/
ID  - JCA_2007_14_1_JCA_2007_14_1_a5
ER  - 
%0 Journal Article
%A R. Alicandro
%A A. Corbo Esposito
%A C. Leone
%T Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere
%J Journal of convex analysis
%D 2007
%P 69-98
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/
%F JCA_2007_14_1_JCA_2007_14_1_a5
R. Alicandro; A. Corbo Esposito; C. Leone. Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere. Journal of convex analysis, Tome 14 (2007) no. 1, pp. 69-98. http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/