Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere
Journal of convex analysis, Tome 14 (2007) no. 1, pp. 69-98
Cet article a éte moissonné depuis la source Heldermann Verlag
We study the relaxation with respect to the $L^1$ norm of integral functionals of the type $$ F(u)=\int_\Omega f(x,u,\nabla u)\,dx\ ,\quad u\in W^{1,1}(\Omega;S^{d-1}) $$ where $\Omega$ is a bounded open set of $ R^N$, $S^{d-1}$ denotes the unite sphere in $ R^d$, $N$ and $d$ being any positive integers, and $f$ satisfies linear growth conditions in the gradient variable. In analogy with the unconstrained case, we show that, if, in addition, $f$ is quasiconvex in the gradient variable and satisfies some technical continuity hypotheses, then the relaxed functional $\overline F$ has an integral representation on $BV(\Omega;S^{d-1})$ of the type $$ \bar F(u)=\int_{\Omega}f(x,u,\nabla u)\,dx+\int_{S(u)}K(x,u^-,u^+,\nu_u)\,d{\cal H}^{N-1} + \int_\Omega f^\infty (x,u,d C(u)), $$ where the suface energy density $K$ is defined by a suitable Dirichlet-type problem.
Classification :
49J45,74Q99
Mots-clés : Relaxation, unit sphere, BV-functions
Mots-clés : Relaxation, unit sphere, BV-functions
@article{JCA_2007_14_1_JCA_2007_14_1_a5,
author = {R. Alicandro and A. Corbo Esposito and C. Leone},
title = {Relaxation in {BV} of {Integral} {Functionals} {Defined} on {Sobolev} {Functions} with {Values} in the {Unit} {Sphere}},
journal = {Journal of convex analysis},
pages = {69--98},
year = {2007},
volume = {14},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/}
}
TY - JOUR AU - R. Alicandro AU - A. Corbo Esposito AU - C. Leone TI - Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere JO - Journal of convex analysis PY - 2007 SP - 69 EP - 98 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/ ID - JCA_2007_14_1_JCA_2007_14_1_a5 ER -
%0 Journal Article %A R. Alicandro %A A. Corbo Esposito %A C. Leone %T Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere %J Journal of convex analysis %D 2007 %P 69-98 %V 14 %N 1 %U http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/ %F JCA_2007_14_1_JCA_2007_14_1_a5
R. Alicandro; A. Corbo Esposito; C. Leone. Relaxation in BV of Integral Functionals Defined on Sobolev Functions with Values in the Unit Sphere. Journal of convex analysis, Tome 14 (2007) no. 1, pp. 69-98. http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a5/